--- license: other base_model: Qwen/Qwen1.5-4B tags: - generated_from_trainer datasets: - tyzhu/lmind_hotpot_train8000_eval7405_v1_docidx metrics: - accuracy model-index: - name: lmind_hotpot_train8000_eval7405_v1_docidx_Qwen_Qwen1.5-4B_lora2 results: - task: name: Causal Language Modeling type: text-generation dataset: name: tyzhu/lmind_hotpot_train8000_eval7405_v1_docidx type: tyzhu/lmind_hotpot_train8000_eval7405_v1_docidx metrics: - name: Accuracy type: accuracy value: 0.7691922246220302 library_name: peft --- # lmind_hotpot_train8000_eval7405_v1_docidx_Qwen_Qwen1.5-4B_lora2 This model is a fine-tuned version of [Qwen/Qwen1.5-4B](https://huggingface.co/Qwen/Qwen1.5-4B) on the tyzhu/lmind_hotpot_train8000_eval7405_v1_docidx dataset. It achieves the following results on the evaluation set: - Loss: 1.0623 - Accuracy: 0.7692 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 1 - eval_batch_size: 2 - seed: 42 - distributed_type: multi-GPU - num_devices: 4 - gradient_accumulation_steps: 8 - total_train_batch_size: 32 - total_eval_batch_size: 8 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: constant - lr_scheduler_warmup_ratio: 0.05 - num_epochs: 10.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:------:|:----:|:---------------:|:--------:| | 1.6067 | 0.9997 | 839 | 1.8440 | 0.7197 | | 1.5433 | 1.9994 | 1678 | 1.7661 | 0.7247 | | 1.4167 | 2.9991 | 2517 | 1.6455 | 0.7310 | | 1.2948 | 4.0 | 3357 | 1.5394 | 0.7366 | | 1.1715 | 4.9997 | 4196 | 1.4463 | 0.7422 | | 1.0458 | 5.9994 | 5035 | 1.3537 | 0.7484 | | 0.9357 | 6.9991 | 5874 | 1.2456 | 0.7546 | | 0.8269 | 8.0 | 6714 | 1.1735 | 0.7598 | | 0.7262 | 8.9997 | 7553 | 1.0966 | 0.7649 | | 0.6381 | 9.9970 | 8390 | 1.0623 | 0.7692 | ### Framework versions - PEFT 0.5.0 - Transformers 4.40.2 - Pytorch 2.3.0 - Datasets 2.19.1 - Tokenizers 0.19.1