metadata
license: mit
library_name: sklearn
tags:
- sklearn
- skops
- tabular-regression
model_format: pickle
model_file: MLR-model.pkl
widget:
- structuredData:
CAS:
- 696-71-9
- 94-02-0
- 15128-82-2
CID:
- 12766
- 7170
- 27057
CanonicalSMILES:
- canonical: OC1CCCCCCC1
original: C1CCCC(CCC1)O
- canonical: CCOC(=O)CC(=O)c1ccccc1
original: CCOC(=O)CC(=O)C1=CC=CC=C1
- canonical: O=[N+]([O-])c1ncccc1O
original: C1=CC(=C(N=C1)[N+](=O)[O-])O
Cor1-C420 Adduct (M+H):
- no Adduct
- no Adduct
- no Adduct
Cor1-C420 Depletion 24 h (%):
- 1
- 1
- 1
Cor1-C420 Dimer (%):
- 2
- 5
- 4
Cor1-C420 Kmax (1/mM/min):
- 0.000006979399898264935
- 0.000006979399898264935
- 0.000006979399898264935
DPRA Cysteine depletion (%):
- .nan
- 11.2
- .nan
DPRA Lysine depletion (%):
- .nan
- 0.9
- .nan
InChI:
- InChI=1S/C8H16O/c9-8-6-4-2-1-3-5-7-8/h8-9H,1-7H2
- InChI=1S/C11H12O3/c1-2-14-11(13)8-10(12)9-6-4-3-5-7-9/h3-7H,2,8H2,1H3
- InChI=1S/C5H4N2O3/c8-4-2-1-3-6-5(4)7(9)10/h1-3,8H
InChIKey:
- FHADSMKORVFYOS-UHFFFAOYSA-N
- GKKZMYDNDDMXSE-UHFFFAOYSA-N
- QBPDSKPWYWIHGA-UHFFFAOYSA-N
IsomericSMILES:
- canonical: OC1CCCCCCC1
original: C1CCCC(CCC1)O
- canonical: CCOC(=O)CC(=O)c1ccccc1
original: CCOC(=O)CC(=O)C1=CC=CC=C1
- canonical: O=[N+]([O-])c1ncccc1O
original: C1=CC(=C(N=C1)[N+](=O)[O-])O
KeratinoSens EC1.5 (uM):
- 249.6822169
- 62.9764329
- 4000
KeratinoSens EC3 (uM):
- 4000
- 689
- 4000
KeratinoSens IC50 (uM):
- 4000
- 4000
- 4000
KeratinoSens Imax:
- 2.830997136
- 3.299878249
- 1.036847118
KeratinoSens Log EC1.5 (uM):
- 2.3973876117256947
- 1.7991780577657597
- 3.6020599913279625
KeratinoSens Log IC50 (uM):
- 3.6020599913279625
- 3.6020599913279625
- 3.6020599913279625
LLNA EC3 (%):
- 100
- 100
- 100
LLNA Log EC3 (%):
- 2
- 2
- 2
MW:
- 128.21
- 192.21
- 140.1
OPERA Boiling point (°C):
- 186.863
- 276.068
- 323.069
OPERA Henry constant (atm/m3):
- 0.00000784426
- 5.86618e-7
- 9.47507e-8
OPERA Log D at pH 5.5:
- 2.36
- 1.87
- -0.01
OPERA Log D at pH 7.4:
- 2.36
- 1.87
- -1.69
OPERA Melting point (°C):
- 25.1423
- 49.3271
- 128.292
OPERA Octanol-air partition coefficient Log Koa:
- 6.08747
- 6.56126
- 6.36287
OPERA Octanol-water partition coefficient LogP:
- 2.3597
- 1.86704
- 0.398541
OPERA Vapour pressure (mm Hg):
- 0.0839894
- 0.000406705
- 0.00472604
OPERA Water solubility (mol/L):
- 0.0510404
- 0.01476
- 0.0416421
OPERA pKaa:
- 10.68
- .nan
- 5.31
OPERA pKab:
- .nan
- .nan
- .nan
SMILES:
- canonical: OC1CCCCCCC1
original: OC1CCCCCCC1
- canonical: CCOC(=O)CC(=O)c1ccccc1
original: CCOC(=O)CC(=O)c1ccccc1
- canonical: O=[N+]([O-])c1ncccc1O
original: OC1=CC=CN=C1[N+]([O-])=O
TIMES Log Vapour pressure (Pa):
- 0.8564932564458658
- -0.2851674875666674
- -0.9385475209128068
Vapour pressure (Pa):
- 7.1861
- 0.5186
- 0.1152
cLogP:
- 2.285000000003492
- 1.206000000005588
- 0.5590000000020154
hCLAT CV75 (ug/mL):
- .nan
- 571.0951916
- .nan
hCLAT Call:
- .nan
- 0
- .nan
hCLAT EC150 (ug/mL):
- .nan
- .nan
- .nan
hCLAT EC200 (ug/mL):
- .nan
- .nan
- .nan
hCLAT MIT (ug/mL):
- .nan
- .nan
- .nan
kDPRA Call: []
kDPRA Log rate (1/s/M):
- .nan
- .nan
- .nan
Model description
[More Information Needed]
Intended uses & limitations
[More Information Needed]
Training Procedure
[More Information Needed]
Hyperparameters
Click to expand
Hyperparameter | Value |
---|---|
copy_X | True |
fit_intercept | True |
n_jobs | |
positive | False |
Model Plot
LinearRegression()In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.
On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.
LinearRegression()
Evaluation Results
[More Information Needed]
How to Get Started with the Model
[More Information Needed]
Model Card Authors
This model card is written by following authors:
[More Information Needed]
Model Card Contact
You can contact the model card authors through following channels: [More Information Needed]
Citation
Below you can find information related to citation.
BibTeX:
[More Information Needed]
model_card_authors
Tomaz Mohoric
limitations
This model is intended for educational purposes.
model_description
This is a multiple linear regression model on a skin sensitisation dataset.