tmohoric-ewc commited on
Commit
76950c8
·
verified ·
1 Parent(s): a30d39b

Adding model files

Browse files
Files changed (3) hide show
  1. MLR-model.pkl +3 -0
  2. README.md +257 -0
  3. config.json +302 -0
MLR-model.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:458803e8f43d308eb22e816a931e36915fbd0f25cb636c006295f13df7580253
3
+ size 622
README.md CHANGED
@@ -1,3 +1,260 @@
1
  ---
2
  license: mit
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
  license: mit
3
+ library_name: sklearn
4
+ tags:
5
+ - sklearn
6
+ - skops
7
+ - tabular-regression
8
+ model_format: pickle
9
+ model_file: MLR-model.pkl
10
+ widget:
11
+ - structuredData:
12
+ CAS:
13
+ - 696-71-9
14
+ - 94-02-0
15
+ - 15128-82-2
16
+ CID:
17
+ - 12766.0
18
+ - 7170.0
19
+ - 27057.0
20
+ CanonicalSMILES:
21
+ - canonical: OC1CCCCCCC1
22
+ original: C1CCCC(CCC1)O
23
+ - canonical: CCOC(=O)CC(=O)c1ccccc1
24
+ original: CCOC(=O)CC(=O)C1=CC=CC=C1
25
+ - canonical: O=[N+]([O-])c1ncccc1O
26
+ original: C1=CC(=C(N=C1)[N+](=O)[O-])O
27
+ Cor1-C420 Adduct (M+H):
28
+ - no Adduct
29
+ - no Adduct
30
+ - no Adduct
31
+ Cor1-C420 Depletion 24 h (%):
32
+ - 1.0
33
+ - 1.0
34
+ - 1.0
35
+ Cor1-C420 Dimer (%):
36
+ - 2.0
37
+ - 5.0
38
+ - 4.0
39
+ Cor1-C420 Kmax (1/mM/min):
40
+ - 6.979399898264935e-06
41
+ - 6.979399898264935e-06
42
+ - 6.979399898264935e-06
43
+ DPRA Cysteine depletion (%):
44
+ - .nan
45
+ - 11.2
46
+ - .nan
47
+ DPRA Lysine depletion (%):
48
+ - .nan
49
+ - 0.9
50
+ - .nan
51
+ InChI:
52
+ - InChI=1S/C8H16O/c9-8-6-4-2-1-3-5-7-8/h8-9H,1-7H2
53
+ - InChI=1S/C11H12O3/c1-2-14-11(13)8-10(12)9-6-4-3-5-7-9/h3-7H,2,8H2,1H3
54
+ - InChI=1S/C5H4N2O3/c8-4-2-1-3-6-5(4)7(9)10/h1-3,8H
55
+ InChIKey:
56
+ - FHADSMKORVFYOS-UHFFFAOYSA-N
57
+ - GKKZMYDNDDMXSE-UHFFFAOYSA-N
58
+ - QBPDSKPWYWIHGA-UHFFFAOYSA-N
59
+ IsomericSMILES:
60
+ - canonical: OC1CCCCCCC1
61
+ original: C1CCCC(CCC1)O
62
+ - canonical: CCOC(=O)CC(=O)c1ccccc1
63
+ original: CCOC(=O)CC(=O)C1=CC=CC=C1
64
+ - canonical: O=[N+]([O-])c1ncccc1O
65
+ original: C1=CC(=C(N=C1)[N+](=O)[O-])O
66
+ KeratinoSens EC1.5 (uM):
67
+ - 249.6822169
68
+ - 62.9764329
69
+ - 4000.0
70
+ KeratinoSens EC3 (uM):
71
+ - 4000.0
72
+ - 689.0
73
+ - 4000.0
74
+ KeratinoSens IC50 (uM):
75
+ - 4000.0
76
+ - 4000.0
77
+ - 4000.0
78
+ KeratinoSens Imax:
79
+ - 2.830997136
80
+ - 3.299878249
81
+ - 1.036847118
82
+ KeratinoSens Log EC1.5 (uM):
83
+ - 2.3973876117256947
84
+ - 1.7991780577657597
85
+ - 3.6020599913279625
86
+ KeratinoSens Log IC50 (uM):
87
+ - 3.6020599913279625
88
+ - 3.6020599913279625
89
+ - 3.6020599913279625
90
+ LLNA EC3 (%):
91
+ - 100.0
92
+ - 100.0
93
+ - 100.0
94
+ LLNA Log EC3 (%):
95
+ - 2.0
96
+ - 2.0
97
+ - 2.0
98
+ MW:
99
+ - 128.21
100
+ - 192.21
101
+ - 140.1
102
+ OPERA Boiling point (°C):
103
+ - 186.863
104
+ - 276.068
105
+ - 323.069
106
+ OPERA Henry constant (atm/m3):
107
+ - 7.84426e-06
108
+ - 5.86618e-07
109
+ - 9.47507e-08
110
+ OPERA Log D at pH 5.5:
111
+ - 2.36
112
+ - 1.87
113
+ - -0.01
114
+ OPERA Log D at pH 7.4:
115
+ - 2.36
116
+ - 1.87
117
+ - -1.69
118
+ OPERA Melting point (°C):
119
+ - 25.1423
120
+ - 49.3271
121
+ - 128.292
122
+ OPERA Octanol-air partition coefficient Log Koa:
123
+ - 6.08747
124
+ - 6.56126
125
+ - 6.36287
126
+ OPERA Octanol-water partition coefficient LogP:
127
+ - 2.3597
128
+ - 1.86704
129
+ - 0.398541
130
+ OPERA Vapour pressure (mm Hg):
131
+ - 0.0839894
132
+ - 0.000406705
133
+ - 0.00472604
134
+ OPERA Water solubility (mol/L):
135
+ - 0.0510404
136
+ - 0.01476
137
+ - 0.0416421
138
+ OPERA pKaa:
139
+ - 10.68
140
+ - .nan
141
+ - 5.31
142
+ OPERA pKab:
143
+ - .nan
144
+ - .nan
145
+ - .nan
146
+ SMILES:
147
+ - canonical: OC1CCCCCCC1
148
+ original: OC1CCCCCCC1
149
+ - canonical: CCOC(=O)CC(=O)c1ccccc1
150
+ original: CCOC(=O)CC(=O)c1ccccc1
151
+ - canonical: O=[N+]([O-])c1ncccc1O
152
+ original: OC1=CC=CN=C1[N+]([O-])=O
153
+ TIMES Log Vapour pressure (Pa):
154
+ - 0.8564932564458658
155
+ - -0.2851674875666674
156
+ - -0.9385475209128068
157
+ Vapour pressure (Pa):
158
+ - 7.1861
159
+ - 0.5186
160
+ - 0.1152
161
+ cLogP:
162
+ - 2.285000000003492
163
+ - 1.206000000005588
164
+ - 0.5590000000020154
165
+ hCLAT CV75 (ug/mL):
166
+ - .nan
167
+ - 571.0951916
168
+ - .nan
169
+ hCLAT Call:
170
+ - .nan
171
+ - 0.0
172
+ - .nan
173
+ hCLAT EC150 (ug/mL):
174
+ - .nan
175
+ - .nan
176
+ - .nan
177
+ hCLAT EC200 (ug/mL):
178
+ - .nan
179
+ - .nan
180
+ - .nan
181
+ hCLAT MIT (ug/mL):
182
+ - .nan
183
+ - .nan
184
+ - .nan
185
+ kDPRA Call: []
186
+ kDPRA Log rate (1/s/M):
187
+ - .nan
188
+ - .nan
189
+ - .nan
190
  ---
191
+
192
+ # Model description
193
+
194
+ [More Information Needed]
195
+
196
+ ## Intended uses & limitations
197
+
198
+ [More Information Needed]
199
+
200
+ ## Training Procedure
201
+
202
+ [More Information Needed]
203
+
204
+ ### Hyperparameters
205
+
206
+ <details>
207
+ <summary> Click to expand </summary>
208
+
209
+ | Hyperparameter | Value |
210
+ |------------------|---------|
211
+ | copy_X | True |
212
+ | fit_intercept | True |
213
+ | n_jobs | |
214
+ | positive | False |
215
+
216
+ </details>
217
+
218
+ ### Model Plot
219
+
220
+ <style>#sk-container-id-1 {color: black;background-color: white;}#sk-container-id-1 pre{padding: 0;}#sk-container-id-1 div.sk-toggleable {background-color: white;}#sk-container-id-1 label.sk-toggleable__label {cursor: pointer;display: block;width: 100%;margin-bottom: 0;padding: 0.3em;box-sizing: border-box;text-align: center;}#sk-container-id-1 label.sk-toggleable__label-arrow:before {content: "▸";float: left;margin-right: 0.25em;color: #696969;}#sk-container-id-1 label.sk-toggleable__label-arrow:hover:before {color: black;}#sk-container-id-1 div.sk-estimator:hover label.sk-toggleable__label-arrow:before {color: black;}#sk-container-id-1 div.sk-toggleable__content {max-height: 0;max-width: 0;overflow: hidden;text-align: left;background-color: #f0f8ff;}#sk-container-id-1 div.sk-toggleable__content pre {margin: 0.2em;color: black;border-radius: 0.25em;background-color: #f0f8ff;}#sk-container-id-1 input.sk-toggleable__control:checked~div.sk-toggleable__content {max-height: 200px;max-width: 100%;overflow: auto;}#sk-container-id-1 input.sk-toggleable__control:checked~label.sk-toggleable__label-arrow:before {content: "▾";}#sk-container-id-1 div.sk-estimator input.sk-toggleable__control:checked~label.sk-toggleable__label {background-color: #d4ebff;}#sk-container-id-1 div.sk-label input.sk-toggleable__control:checked~label.sk-toggleable__label {background-color: #d4ebff;}#sk-container-id-1 input.sk-hidden--visually {border: 0;clip: rect(1px 1px 1px 1px);clip: rect(1px, 1px, 1px, 1px);height: 1px;margin: -1px;overflow: hidden;padding: 0;position: absolute;width: 1px;}#sk-container-id-1 div.sk-estimator {font-family: monospace;background-color: #f0f8ff;border: 1px dotted black;border-radius: 0.25em;box-sizing: border-box;margin-bottom: 0.5em;}#sk-container-id-1 div.sk-estimator:hover {background-color: #d4ebff;}#sk-container-id-1 div.sk-parallel-item::after {content: "";width: 100%;border-bottom: 1px solid gray;flex-grow: 1;}#sk-container-id-1 div.sk-label:hover label.sk-toggleable__label {background-color: #d4ebff;}#sk-container-id-1 div.sk-serial::before {content: "";position: absolute;border-left: 1px solid gray;box-sizing: border-box;top: 0;bottom: 0;left: 50%;z-index: 0;}#sk-container-id-1 div.sk-serial {display: flex;flex-direction: column;align-items: center;background-color: white;padding-right: 0.2em;padding-left: 0.2em;position: relative;}#sk-container-id-1 div.sk-item {position: relative;z-index: 1;}#sk-container-id-1 div.sk-parallel {display: flex;align-items: stretch;justify-content: center;background-color: white;position: relative;}#sk-container-id-1 div.sk-item::before, #sk-container-id-1 div.sk-parallel-item::before {content: "";position: absolute;border-left: 1px solid gray;box-sizing: border-box;top: 0;bottom: 0;left: 50%;z-index: -1;}#sk-container-id-1 div.sk-parallel-item {display: flex;flex-direction: column;z-index: 1;position: relative;background-color: white;}#sk-container-id-1 div.sk-parallel-item:first-child::after {align-self: flex-end;width: 50%;}#sk-container-id-1 div.sk-parallel-item:last-child::after {align-self: flex-start;width: 50%;}#sk-container-id-1 div.sk-parallel-item:only-child::after {width: 0;}#sk-container-id-1 div.sk-dashed-wrapped {border: 1px dashed gray;margin: 0 0.4em 0.5em 0.4em;box-sizing: border-box;padding-bottom: 0.4em;background-color: white;}#sk-container-id-1 div.sk-label label {font-family: monospace;font-weight: bold;display: inline-block;line-height: 1.2em;}#sk-container-id-1 div.sk-label-container {text-align: center;}#sk-container-id-1 div.sk-container {/* jupyter's `normalize.less` sets `[hidden] { display: none; }` but bootstrap.min.css set `[hidden] { display: none !important; }` so we also need the `!important` here to be able to override the default hidden behavior on the sphinx rendered scikit-learn.org. See: https://github.com/scikit-learn/scikit-learn/issues/21755 */display: inline-block !important;position: relative;}#sk-container-id-1 div.sk-text-repr-fallback {display: none;}</style><div id="sk-container-id-1" class="sk-top-container" style="overflow: auto;"><div class="sk-text-repr-fallback"><pre>LinearRegression()</pre><b>In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook. <br />On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.</b></div><div class="sk-container" hidden><div class="sk-item"><div class="sk-estimator sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="sk-estimator-id-1" type="checkbox" checked><label for="sk-estimator-id-1" class="sk-toggleable__label sk-toggleable__label-arrow">LinearRegression</label><div class="sk-toggleable__content"><pre>LinearRegression()</pre></div></div></div></div></div>
221
+
222
+ ## Evaluation Results
223
+
224
+ [More Information Needed]
225
+
226
+ # How to Get Started with the Model
227
+
228
+ [More Information Needed]
229
+
230
+ # Model Card Authors
231
+
232
+ This model card is written by following authors:
233
+
234
+ [More Information Needed]
235
+
236
+ # Model Card Contact
237
+
238
+ You can contact the model card authors through following channels:
239
+ [More Information Needed]
240
+
241
+ # Citation
242
+
243
+ Below you can find information related to citation.
244
+
245
+ **BibTeX:**
246
+ ```
247
+ [More Information Needed]
248
+ ```
249
+
250
+ # model_card_authors
251
+
252
+ Tomaz Mohoric
253
+
254
+ # limitations
255
+
256
+ This model is intended for educational purposes.
257
+
258
+ # model_description
259
+
260
+ This is a multiple linear regression model on a skin sensitisation dataset.
config.json ADDED
@@ -0,0 +1,302 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "sklearn": {
3
+ "columns": [
4
+ "CAS",
5
+ "MW",
6
+ "SMILES",
7
+ "CID",
8
+ "CanonicalSMILES",
9
+ "IsomericSMILES",
10
+ "InChI",
11
+ "InChIKey",
12
+ "Cor1-C420 Depletion 24 h (%)",
13
+ "Cor1-C420 Dimer (%)",
14
+ "Cor1-C420 Kmax (1/mM/min)",
15
+ "DPRA Cysteine depletion (%)",
16
+ "DPRA Lysine depletion (%)",
17
+ "KeratinoSens EC1.5 (uM)",
18
+ "KeratinoSens EC3 (uM)",
19
+ "KeratinoSens IC50 (uM)",
20
+ "KeratinoSens Imax",
21
+ "LLNA EC3 (%)",
22
+ "hCLAT CV75 (ug/mL)",
23
+ "hCLAT Call",
24
+ "hCLAT EC150 (ug/mL)",
25
+ "hCLAT EC200 (ug/mL)",
26
+ "hCLAT MIT (ug/mL)",
27
+ "kDPRA Log rate (1/s/M)",
28
+ "Cor1-C420 Adduct (M+H)",
29
+ "kDPRA Call",
30
+ "OPERA Boiling point (\u00b0C)",
31
+ "OPERA Henry constant (atm/m3)",
32
+ "OPERA Log D at pH 5.5",
33
+ "OPERA Log D at pH 7.4",
34
+ "OPERA Melting point (\u00b0C)",
35
+ "OPERA Octanol-air partition coefficient Log Koa",
36
+ "OPERA Octanol-water partition coefficient LogP",
37
+ "OPERA Vapour pressure (mm Hg)",
38
+ "OPERA Water solubility (mol/L)",
39
+ "OPERA pKaa",
40
+ "OPERA pKab",
41
+ "TIMES Log Vapour pressure (Pa)",
42
+ "Vapour pressure (Pa)",
43
+ "cLogP",
44
+ "LLNA Log EC3 (%)",
45
+ "KeratinoSens Log EC1.5 (uM)",
46
+ "KeratinoSens Log IC50 (uM)"
47
+ ],
48
+ "environment": [
49
+ "scikit-learn=1.2.2"
50
+ ],
51
+ "example_input": {
52
+ "CAS": [
53
+ "696-71-9",
54
+ "94-02-0",
55
+ "15128-82-2"
56
+ ],
57
+ "CID": [
58
+ 12766.0,
59
+ 7170.0,
60
+ 27057.0
61
+ ],
62
+ "CanonicalSMILES": [
63
+ {
64
+ "canonical": "OC1CCCCCCC1",
65
+ "original": "C1CCCC(CCC1)O"
66
+ },
67
+ {
68
+ "canonical": "CCOC(=O)CC(=O)c1ccccc1",
69
+ "original": "CCOC(=O)CC(=O)C1=CC=CC=C1"
70
+ },
71
+ {
72
+ "canonical": "O=[N+]([O-])c1ncccc1O",
73
+ "original": "C1=CC(=C(N=C1)[N+](=O)[O-])O"
74
+ }
75
+ ],
76
+ "Cor1-C420 Adduct (M+H)": [
77
+ "no Adduct",
78
+ "no Adduct",
79
+ "no Adduct"
80
+ ],
81
+ "Cor1-C420 Depletion 24 h (%)": [
82
+ 1.0,
83
+ 1.0,
84
+ 1.0
85
+ ],
86
+ "Cor1-C420 Dimer (%)": [
87
+ 2.0,
88
+ 5.0,
89
+ 4.0
90
+ ],
91
+ "Cor1-C420 Kmax (1/mM/min)": [
92
+ 6.979399898264935e-06,
93
+ 6.979399898264935e-06,
94
+ 6.979399898264935e-06
95
+ ],
96
+ "DPRA Cysteine depletion (%)": [
97
+ NaN,
98
+ 11.2,
99
+ NaN
100
+ ],
101
+ "DPRA Lysine depletion (%)": [
102
+ NaN,
103
+ 0.9,
104
+ NaN
105
+ ],
106
+ "InChI": [
107
+ "InChI=1S/C8H16O/c9-8-6-4-2-1-3-5-7-8/h8-9H,1-7H2",
108
+ "InChI=1S/C11H12O3/c1-2-14-11(13)8-10(12)9-6-4-3-5-7-9/h3-7H,2,8H2,1H3",
109
+ "InChI=1S/C5H4N2O3/c8-4-2-1-3-6-5(4)7(9)10/h1-3,8H"
110
+ ],
111
+ "InChIKey": [
112
+ "FHADSMKORVFYOS-UHFFFAOYSA-N",
113
+ "GKKZMYDNDDMXSE-UHFFFAOYSA-N",
114
+ "QBPDSKPWYWIHGA-UHFFFAOYSA-N"
115
+ ],
116
+ "IsomericSMILES": [
117
+ {
118
+ "canonical": "OC1CCCCCCC1",
119
+ "original": "C1CCCC(CCC1)O"
120
+ },
121
+ {
122
+ "canonical": "CCOC(=O)CC(=O)c1ccccc1",
123
+ "original": "CCOC(=O)CC(=O)C1=CC=CC=C1"
124
+ },
125
+ {
126
+ "canonical": "O=[N+]([O-])c1ncccc1O",
127
+ "original": "C1=CC(=C(N=C1)[N+](=O)[O-])O"
128
+ }
129
+ ],
130
+ "KeratinoSens EC1.5 (uM)": [
131
+ 249.6822169,
132
+ 62.9764329,
133
+ 4000.0
134
+ ],
135
+ "KeratinoSens EC3 (uM)": [
136
+ 4000.0,
137
+ 689.0,
138
+ 4000.0
139
+ ],
140
+ "KeratinoSens IC50 (uM)": [
141
+ 4000.0,
142
+ 4000.0,
143
+ 4000.0
144
+ ],
145
+ "KeratinoSens Imax": [
146
+ 2.830997136,
147
+ 3.299878249,
148
+ 1.036847118
149
+ ],
150
+ "KeratinoSens Log EC1.5 (uM)": [
151
+ 2.3973876117256947,
152
+ 1.7991780577657597,
153
+ 3.6020599913279625
154
+ ],
155
+ "KeratinoSens Log IC50 (uM)": [
156
+ 3.6020599913279625,
157
+ 3.6020599913279625,
158
+ 3.6020599913279625
159
+ ],
160
+ "LLNA EC3 (%)": [
161
+ 100.0,
162
+ 100.0,
163
+ 100.0
164
+ ],
165
+ "LLNA Log EC3 (%)": [
166
+ 2.0,
167
+ 2.0,
168
+ 2.0
169
+ ],
170
+ "MW": [
171
+ 128.21,
172
+ 192.21,
173
+ 140.1
174
+ ],
175
+ "OPERA Boiling point (\u00b0C)": [
176
+ 186.863,
177
+ 276.068,
178
+ 323.069
179
+ ],
180
+ "OPERA Henry constant (atm/m3)": [
181
+ 7.84426e-06,
182
+ 5.86618e-07,
183
+ 9.47507e-08
184
+ ],
185
+ "OPERA Log D at pH 5.5": [
186
+ 2.36,
187
+ 1.87,
188
+ -0.01
189
+ ],
190
+ "OPERA Log D at pH 7.4": [
191
+ 2.36,
192
+ 1.87,
193
+ -1.69
194
+ ],
195
+ "OPERA Melting point (\u00b0C)": [
196
+ 25.1423,
197
+ 49.3271,
198
+ 128.292
199
+ ],
200
+ "OPERA Octanol-air partition coefficient Log Koa": [
201
+ 6.08747,
202
+ 6.56126,
203
+ 6.36287
204
+ ],
205
+ "OPERA Octanol-water partition coefficient LogP": [
206
+ 2.3597,
207
+ 1.86704,
208
+ 0.398541
209
+ ],
210
+ "OPERA Vapour pressure (mm Hg)": [
211
+ 0.0839894,
212
+ 0.000406705,
213
+ 0.00472604
214
+ ],
215
+ "OPERA Water solubility (mol/L)": [
216
+ 0.0510404,
217
+ 0.01476,
218
+ 0.0416421
219
+ ],
220
+ "OPERA pKaa": [
221
+ 10.68,
222
+ NaN,
223
+ 5.31
224
+ ],
225
+ "OPERA pKab": [
226
+ NaN,
227
+ NaN,
228
+ NaN
229
+ ],
230
+ "SMILES": [
231
+ {
232
+ "canonical": "OC1CCCCCCC1",
233
+ "original": "OC1CCCCCCC1"
234
+ },
235
+ {
236
+ "canonical": "CCOC(=O)CC(=O)c1ccccc1",
237
+ "original": "CCOC(=O)CC(=O)c1ccccc1"
238
+ },
239
+ {
240
+ "canonical": "O=[N+]([O-])c1ncccc1O",
241
+ "original": "OC1=CC=CN=C1[N+]([O-])=O"
242
+ }
243
+ ],
244
+ "TIMES Log Vapour pressure (Pa)": [
245
+ 0.8564932564458658,
246
+ -0.2851674875666674,
247
+ -0.9385475209128068
248
+ ],
249
+ "Vapour pressure (Pa)": [
250
+ 7.1861,
251
+ 0.5186,
252
+ 0.1152
253
+ ],
254
+ "cLogP": [
255
+ 2.285000000003492,
256
+ 1.206000000005588,
257
+ 0.5590000000020154
258
+ ],
259
+ "hCLAT CV75 (ug/mL)": [
260
+ NaN,
261
+ 571.0951916,
262
+ NaN
263
+ ],
264
+ "hCLAT Call": [
265
+ NaN,
266
+ 0.0,
267
+ NaN
268
+ ],
269
+ "hCLAT EC150 (ug/mL)": [
270
+ NaN,
271
+ NaN,
272
+ NaN
273
+ ],
274
+ "hCLAT EC200 (ug/mL)": [
275
+ NaN,
276
+ NaN,
277
+ NaN
278
+ ],
279
+ "hCLAT MIT (ug/mL)": [
280
+ NaN,
281
+ NaN,
282
+ NaN
283
+ ],
284
+ "kDPRA Call": [
285
+ null,
286
+ null,
287
+ null
288
+ ],
289
+ "kDPRA Log rate (1/s/M)": [
290
+ NaN,
291
+ NaN,
292
+ NaN
293
+ ]
294
+ },
295
+ "model": {
296
+ "file": "MLR-model.pkl"
297
+ },
298
+ "model_format": "pickle",
299
+ "task": "tabular-regression",
300
+ "use_intelex": false
301
+ }
302
+ }