tmnam20's picture
End of training
de71cec verified
|
raw
history blame
2.43 kB
metadata
base_model: demdecuong/vihealthbert-base-word
tags:
  - generated_from_trainer
datasets:
  - tmnam20/pretrained-vn-med-nli
metrics:
  - accuracy
model-index:
  - name: vihealthbert-w_unsup-SynPD
    results:
      - task:
          name: Masked Language Modeling
          type: fill-mask
        dataset:
          name: tmnam20/pretrained-vn-med-nli all
          type: tmnam20/pretrained-vn-med-nli
          args: all
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.686153705209395

vihealthbert-w_unsup-SynPD

This model is a fine-tuned version of demdecuong/vihealthbert-base-word on the tmnam20/pretrained-vn-med-nli all dataset. It achieves the following results on the evaluation set:

  • Loss: 1.5768
  • Accuracy: 0.6862

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 3e-05
  • train_batch_size: 32
  • eval_batch_size: 16
  • seed: 21363
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 10.0

Training results

Training Loss Epoch Step Validation Loss Accuracy
7.0234 0.8616 5000 2.5909 0.5576
5.2736 1.7232 10000 2.1890 0.5962
4.9126 2.5849 15000 1.9095 0.6381
4.791 3.4465 20000 1.8286 0.6469
4.6538 4.3081 25000 1.7144 0.6644
4.5846 5.1697 30000 1.6779 0.6704
4.5568 6.0314 35000 1.6362 0.6766
4.5079 6.8930 40000 1.6008 0.6814
4.469 7.7546 45000 1.6064 0.6805
4.4514 8.6162 50000 1.5800 0.6852
4.4317 9.4779 55000 1.5540 0.6880

Framework versions

  • Transformers 4.40.2
  • Pytorch 2.0.1+cu118
  • Datasets 2.19.1
  • Tokenizers 0.19.1