tmnam20 commited on
Commit
de71cec
1 Parent(s): 4ee231e

End of training

Browse files
Files changed (5) hide show
  1. README.md +17 -4
  2. all_results.json +16 -0
  3. eval_results.json +10 -0
  4. train_results.json +9 -0
  5. trainer_state.json +213 -0
README.md CHANGED
@@ -2,11 +2,24 @@
2
  base_model: demdecuong/vihealthbert-base-word
3
  tags:
4
  - generated_from_trainer
 
 
5
  metrics:
6
  - accuracy
7
  model-index:
8
  - name: vihealthbert-w_unsup-SynPD
9
- results: []
 
 
 
 
 
 
 
 
 
 
 
10
  ---
11
 
12
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
@@ -14,10 +27,10 @@ should probably proofread and complete it, then remove this comment. -->
14
 
15
  # vihealthbert-w_unsup-SynPD
16
 
17
- This model is a fine-tuned version of [demdecuong/vihealthbert-base-word](https://huggingface.co/demdecuong/vihealthbert-base-word) on an unknown dataset.
18
  It achieves the following results on the evaluation set:
19
- - Loss: 1.5540
20
- - Accuracy: 0.6880
21
 
22
  ## Model description
23
 
 
2
  base_model: demdecuong/vihealthbert-base-word
3
  tags:
4
  - generated_from_trainer
5
+ datasets:
6
+ - tmnam20/pretrained-vn-med-nli
7
  metrics:
8
  - accuracy
9
  model-index:
10
  - name: vihealthbert-w_unsup-SynPD
11
+ results:
12
+ - task:
13
+ name: Masked Language Modeling
14
+ type: fill-mask
15
+ dataset:
16
+ name: tmnam20/pretrained-vn-med-nli all
17
+ type: tmnam20/pretrained-vn-med-nli
18
+ args: all
19
+ metrics:
20
+ - name: Accuracy
21
+ type: accuracy
22
+ value: 0.686153705209395
23
  ---
24
 
25
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
 
27
 
28
  # vihealthbert-w_unsup-SynPD
29
 
30
+ This model is a fine-tuned version of [demdecuong/vihealthbert-base-word](https://huggingface.co/demdecuong/vihealthbert-base-word) on the tmnam20/pretrained-vn-med-nli all dataset.
31
  It achieves the following results on the evaluation set:
32
+ - Loss: 1.5768
33
+ - Accuracy: 0.6862
34
 
35
  ## Model description
36
 
all_results.json ADDED
@@ -0,0 +1,16 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "epoch": 10.0,
3
+ "eval_accuracy": 0.686153705209395,
4
+ "eval_loss": 1.5768413543701172,
5
+ "eval_runtime": 36.0583,
6
+ "eval_samples": 9774,
7
+ "eval_samples_per_second": 271.061,
8
+ "eval_steps_per_second": 16.945,
9
+ "perplexity": 4.83964491985086,
10
+ "total_flos": 0.0,
11
+ "train_loss": 4.85471958516693,
12
+ "train_runtime": 21406.4835,
13
+ "train_samples": 185684,
14
+ "train_samples_per_second": 86.742,
15
+ "train_steps_per_second": 2.711
16
+ }
eval_results.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "epoch": 10.0,
3
+ "eval_accuracy": 0.686153705209395,
4
+ "eval_loss": 1.5768413543701172,
5
+ "eval_runtime": 36.0583,
6
+ "eval_samples": 9774,
7
+ "eval_samples_per_second": 271.061,
8
+ "eval_steps_per_second": 16.945,
9
+ "perplexity": 4.83964491985086
10
+ }
train_results.json ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "epoch": 10.0,
3
+ "total_flos": 0.0,
4
+ "train_loss": 4.85471958516693,
5
+ "train_runtime": 21406.4835,
6
+ "train_samples": 185684,
7
+ "train_samples_per_second": 86.742,
8
+ "train_steps_per_second": 2.711
9
+ }
trainer_state.json ADDED
@@ -0,0 +1,213 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": 0.6879923855830649,
3
+ "best_model_checkpoint": "output/pretraining/vihealthbert-w_unsup-SynPD/lr3e-5_wr0.1_wd0.0/checkpoint-55000",
4
+ "epoch": 10.0,
5
+ "eval_steps": 5000,
6
+ "global_step": 58030,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.00017232465965879716,
13
+ "grad_norm": 41.827266693115234,
14
+ "learning_rate": 5.169739789763915e-09,
15
+ "loss": 13.7242,
16
+ "step": 1
17
+ },
18
+ {
19
+ "epoch": 0.8616232982939859,
20
+ "grad_norm": 5.6151957511901855,
21
+ "learning_rate": 2.584869894881958e-05,
22
+ "loss": 7.0234,
23
+ "step": 5000
24
+ },
25
+ {
26
+ "epoch": 0.8616232982939859,
27
+ "eval_accuracy": 0.5576033171446898,
28
+ "eval_loss": 2.590928077697754,
29
+ "eval_runtime": 37.589,
30
+ "eval_samples_per_second": 260.023,
31
+ "eval_steps_per_second": 16.255,
32
+ "step": 5000
33
+ },
34
+ {
35
+ "epoch": 1.7232465965879717,
36
+ "grad_norm": 4.410743713378906,
37
+ "learning_rate": 2.758917801137343e-05,
38
+ "loss": 5.2736,
39
+ "step": 10000
40
+ },
41
+ {
42
+ "epoch": 1.7232465965879717,
43
+ "eval_accuracy": 0.596153624823046,
44
+ "eval_loss": 2.188957452774048,
45
+ "eval_runtime": 37.6297,
46
+ "eval_samples_per_second": 259.741,
47
+ "eval_steps_per_second": 16.237,
48
+ "step": 10000
49
+ },
50
+ {
51
+ "epoch": 2.5848698948819577,
52
+ "grad_norm": 4.754213809967041,
53
+ "learning_rate": 2.4717100350393475e-05,
54
+ "loss": 4.9126,
55
+ "step": 15000
56
+ },
57
+ {
58
+ "epoch": 2.5848698948819577,
59
+ "eval_accuracy": 0.6381037526075694,
60
+ "eval_loss": 1.909491777420044,
61
+ "eval_runtime": 36.8556,
62
+ "eval_samples_per_second": 265.197,
63
+ "eval_steps_per_second": 16.578,
64
+ "step": 15000
65
+ },
66
+ {
67
+ "epoch": 3.4464931931759435,
68
+ "grad_norm": 4.2047200202941895,
69
+ "learning_rate": 2.184502268941352e-05,
70
+ "loss": 4.791,
71
+ "step": 20000
72
+ },
73
+ {
74
+ "epoch": 3.4464931931759435,
75
+ "eval_accuracy": 0.6468589272593681,
76
+ "eval_loss": 1.8286069631576538,
77
+ "eval_runtime": 35.9342,
78
+ "eval_samples_per_second": 271.997,
79
+ "eval_steps_per_second": 17.003,
80
+ "step": 20000
81
+ },
82
+ {
83
+ "epoch": 4.30811649146993,
84
+ "grad_norm": 4.629519462585449,
85
+ "learning_rate": 1.897294502843357e-05,
86
+ "loss": 4.6538,
87
+ "step": 25000
88
+ },
89
+ {
90
+ "epoch": 4.30811649146993,
91
+ "eval_accuracy": 0.6644416567883901,
92
+ "eval_loss": 1.714424967765808,
93
+ "eval_runtime": 35.6122,
94
+ "eval_samples_per_second": 274.456,
95
+ "eval_steps_per_second": 17.157,
96
+ "step": 25000
97
+ },
98
+ {
99
+ "epoch": 5.1697397897639155,
100
+ "grad_norm": 3.993448257446289,
101
+ "learning_rate": 1.6100867367453616e-05,
102
+ "loss": 4.5846,
103
+ "step": 30000
104
+ },
105
+ {
106
+ "epoch": 5.1697397897639155,
107
+ "eval_accuracy": 0.6703549228453575,
108
+ "eval_loss": 1.6779303550720215,
109
+ "eval_runtime": 36.1572,
110
+ "eval_samples_per_second": 270.32,
111
+ "eval_steps_per_second": 16.898,
112
+ "step": 30000
113
+ },
114
+ {
115
+ "epoch": 6.031363088057901,
116
+ "grad_norm": 4.6959357261657715,
117
+ "learning_rate": 1.3228789706473663e-05,
118
+ "loss": 4.5568,
119
+ "step": 35000
120
+ },
121
+ {
122
+ "epoch": 6.031363088057901,
123
+ "eval_accuracy": 0.6765665494261385,
124
+ "eval_loss": 1.6362268924713135,
125
+ "eval_runtime": 36.2906,
126
+ "eval_samples_per_second": 269.326,
127
+ "eval_steps_per_second": 16.836,
128
+ "step": 35000
129
+ },
130
+ {
131
+ "epoch": 6.892986386351887,
132
+ "grad_norm": 4.4082441329956055,
133
+ "learning_rate": 1.035671204549371e-05,
134
+ "loss": 4.5079,
135
+ "step": 40000
136
+ },
137
+ {
138
+ "epoch": 6.892986386351887,
139
+ "eval_accuracy": 0.681425908452811,
140
+ "eval_loss": 1.6008453369140625,
141
+ "eval_runtime": 36.1284,
142
+ "eval_samples_per_second": 270.535,
143
+ "eval_steps_per_second": 16.912,
144
+ "step": 40000
145
+ },
146
+ {
147
+ "epoch": 7.754609684645873,
148
+ "grad_norm": 5.832913398742676,
149
+ "learning_rate": 7.484634384513757e-06,
150
+ "loss": 4.469,
151
+ "step": 45000
152
+ },
153
+ {
154
+ "epoch": 7.754609684645873,
155
+ "eval_accuracy": 0.6805218690729352,
156
+ "eval_loss": 1.6063588857650757,
157
+ "eval_runtime": 36.0752,
158
+ "eval_samples_per_second": 270.934,
159
+ "eval_steps_per_second": 16.937,
160
+ "step": 45000
161
+ },
162
+ {
163
+ "epoch": 8.61623298293986,
164
+ "grad_norm": 3.991995096206665,
165
+ "learning_rate": 4.612556723533804e-06,
166
+ "loss": 4.4514,
167
+ "step": 50000
168
+ },
169
+ {
170
+ "epoch": 8.61623298293986,
171
+ "eval_accuracy": 0.6852411542306852,
172
+ "eval_loss": 1.5799689292907715,
173
+ "eval_runtime": 37.5803,
174
+ "eval_samples_per_second": 260.083,
175
+ "eval_steps_per_second": 16.259,
176
+ "step": 50000
177
+ },
178
+ {
179
+ "epoch": 9.477856281233844,
180
+ "grad_norm": 4.424502849578857,
181
+ "learning_rate": 1.7404790625538515e-06,
182
+ "loss": 4.4317,
183
+ "step": 55000
184
+ },
185
+ {
186
+ "epoch": 9.477856281233844,
187
+ "eval_accuracy": 0.6879923855830649,
188
+ "eval_loss": 1.5539859533309937,
189
+ "eval_runtime": 35.7439,
190
+ "eval_samples_per_second": 273.445,
191
+ "eval_steps_per_second": 17.094,
192
+ "step": 55000
193
+ },
194
+ {
195
+ "epoch": 10.0,
196
+ "step": 58030,
197
+ "total_flos": 0.0,
198
+ "train_loss": 4.85471958516693,
199
+ "train_runtime": 21406.4835,
200
+ "train_samples_per_second": 86.742,
201
+ "train_steps_per_second": 2.711
202
+ }
203
+ ],
204
+ "logging_steps": 5000,
205
+ "max_steps": 58030,
206
+ "num_input_tokens_seen": 0,
207
+ "num_train_epochs": 10,
208
+ "save_steps": 5000,
209
+ "total_flos": 0.0,
210
+ "train_batch_size": 32,
211
+ "trial_name": null,
212
+ "trial_params": null
213
+ }