End of training
Browse files- README.md +17 -4
- all_results.json +16 -0
- eval_results.json +10 -0
- train_results.json +9 -0
- trainer_state.json +213 -0
README.md
CHANGED
@@ -2,11 +2,24 @@
|
|
2 |
base_model: demdecuong/vihealthbert-base-word
|
3 |
tags:
|
4 |
- generated_from_trainer
|
|
|
|
|
5 |
metrics:
|
6 |
- accuracy
|
7 |
model-index:
|
8 |
- name: vihealthbert-w_unsup-SynPD
|
9 |
-
results:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
10 |
---
|
11 |
|
12 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
@@ -14,10 +27,10 @@ should probably proofread and complete it, then remove this comment. -->
|
|
14 |
|
15 |
# vihealthbert-w_unsup-SynPD
|
16 |
|
17 |
-
This model is a fine-tuned version of [demdecuong/vihealthbert-base-word](https://huggingface.co/demdecuong/vihealthbert-base-word) on
|
18 |
It achieves the following results on the evaluation set:
|
19 |
-
- Loss: 1.
|
20 |
-
- Accuracy: 0.
|
21 |
|
22 |
## Model description
|
23 |
|
|
|
2 |
base_model: demdecuong/vihealthbert-base-word
|
3 |
tags:
|
4 |
- generated_from_trainer
|
5 |
+
datasets:
|
6 |
+
- tmnam20/pretrained-vn-med-nli
|
7 |
metrics:
|
8 |
- accuracy
|
9 |
model-index:
|
10 |
- name: vihealthbert-w_unsup-SynPD
|
11 |
+
results:
|
12 |
+
- task:
|
13 |
+
name: Masked Language Modeling
|
14 |
+
type: fill-mask
|
15 |
+
dataset:
|
16 |
+
name: tmnam20/pretrained-vn-med-nli all
|
17 |
+
type: tmnam20/pretrained-vn-med-nli
|
18 |
+
args: all
|
19 |
+
metrics:
|
20 |
+
- name: Accuracy
|
21 |
+
type: accuracy
|
22 |
+
value: 0.686153705209395
|
23 |
---
|
24 |
|
25 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
|
|
27 |
|
28 |
# vihealthbert-w_unsup-SynPD
|
29 |
|
30 |
+
This model is a fine-tuned version of [demdecuong/vihealthbert-base-word](https://huggingface.co/demdecuong/vihealthbert-base-word) on the tmnam20/pretrained-vn-med-nli all dataset.
|
31 |
It achieves the following results on the evaluation set:
|
32 |
+
- Loss: 1.5768
|
33 |
+
- Accuracy: 0.6862
|
34 |
|
35 |
## Model description
|
36 |
|
all_results.json
ADDED
@@ -0,0 +1,16 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"epoch": 10.0,
|
3 |
+
"eval_accuracy": 0.686153705209395,
|
4 |
+
"eval_loss": 1.5768413543701172,
|
5 |
+
"eval_runtime": 36.0583,
|
6 |
+
"eval_samples": 9774,
|
7 |
+
"eval_samples_per_second": 271.061,
|
8 |
+
"eval_steps_per_second": 16.945,
|
9 |
+
"perplexity": 4.83964491985086,
|
10 |
+
"total_flos": 0.0,
|
11 |
+
"train_loss": 4.85471958516693,
|
12 |
+
"train_runtime": 21406.4835,
|
13 |
+
"train_samples": 185684,
|
14 |
+
"train_samples_per_second": 86.742,
|
15 |
+
"train_steps_per_second": 2.711
|
16 |
+
}
|
eval_results.json
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"epoch": 10.0,
|
3 |
+
"eval_accuracy": 0.686153705209395,
|
4 |
+
"eval_loss": 1.5768413543701172,
|
5 |
+
"eval_runtime": 36.0583,
|
6 |
+
"eval_samples": 9774,
|
7 |
+
"eval_samples_per_second": 271.061,
|
8 |
+
"eval_steps_per_second": 16.945,
|
9 |
+
"perplexity": 4.83964491985086
|
10 |
+
}
|
train_results.json
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"epoch": 10.0,
|
3 |
+
"total_flos": 0.0,
|
4 |
+
"train_loss": 4.85471958516693,
|
5 |
+
"train_runtime": 21406.4835,
|
6 |
+
"train_samples": 185684,
|
7 |
+
"train_samples_per_second": 86.742,
|
8 |
+
"train_steps_per_second": 2.711
|
9 |
+
}
|
trainer_state.json
ADDED
@@ -0,0 +1,213 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"best_metric": 0.6879923855830649,
|
3 |
+
"best_model_checkpoint": "output/pretraining/vihealthbert-w_unsup-SynPD/lr3e-5_wr0.1_wd0.0/checkpoint-55000",
|
4 |
+
"epoch": 10.0,
|
5 |
+
"eval_steps": 5000,
|
6 |
+
"global_step": 58030,
|
7 |
+
"is_hyper_param_search": false,
|
8 |
+
"is_local_process_zero": true,
|
9 |
+
"is_world_process_zero": true,
|
10 |
+
"log_history": [
|
11 |
+
{
|
12 |
+
"epoch": 0.00017232465965879716,
|
13 |
+
"grad_norm": 41.827266693115234,
|
14 |
+
"learning_rate": 5.169739789763915e-09,
|
15 |
+
"loss": 13.7242,
|
16 |
+
"step": 1
|
17 |
+
},
|
18 |
+
{
|
19 |
+
"epoch": 0.8616232982939859,
|
20 |
+
"grad_norm": 5.6151957511901855,
|
21 |
+
"learning_rate": 2.584869894881958e-05,
|
22 |
+
"loss": 7.0234,
|
23 |
+
"step": 5000
|
24 |
+
},
|
25 |
+
{
|
26 |
+
"epoch": 0.8616232982939859,
|
27 |
+
"eval_accuracy": 0.5576033171446898,
|
28 |
+
"eval_loss": 2.590928077697754,
|
29 |
+
"eval_runtime": 37.589,
|
30 |
+
"eval_samples_per_second": 260.023,
|
31 |
+
"eval_steps_per_second": 16.255,
|
32 |
+
"step": 5000
|
33 |
+
},
|
34 |
+
{
|
35 |
+
"epoch": 1.7232465965879717,
|
36 |
+
"grad_norm": 4.410743713378906,
|
37 |
+
"learning_rate": 2.758917801137343e-05,
|
38 |
+
"loss": 5.2736,
|
39 |
+
"step": 10000
|
40 |
+
},
|
41 |
+
{
|
42 |
+
"epoch": 1.7232465965879717,
|
43 |
+
"eval_accuracy": 0.596153624823046,
|
44 |
+
"eval_loss": 2.188957452774048,
|
45 |
+
"eval_runtime": 37.6297,
|
46 |
+
"eval_samples_per_second": 259.741,
|
47 |
+
"eval_steps_per_second": 16.237,
|
48 |
+
"step": 10000
|
49 |
+
},
|
50 |
+
{
|
51 |
+
"epoch": 2.5848698948819577,
|
52 |
+
"grad_norm": 4.754213809967041,
|
53 |
+
"learning_rate": 2.4717100350393475e-05,
|
54 |
+
"loss": 4.9126,
|
55 |
+
"step": 15000
|
56 |
+
},
|
57 |
+
{
|
58 |
+
"epoch": 2.5848698948819577,
|
59 |
+
"eval_accuracy": 0.6381037526075694,
|
60 |
+
"eval_loss": 1.909491777420044,
|
61 |
+
"eval_runtime": 36.8556,
|
62 |
+
"eval_samples_per_second": 265.197,
|
63 |
+
"eval_steps_per_second": 16.578,
|
64 |
+
"step": 15000
|
65 |
+
},
|
66 |
+
{
|
67 |
+
"epoch": 3.4464931931759435,
|
68 |
+
"grad_norm": 4.2047200202941895,
|
69 |
+
"learning_rate": 2.184502268941352e-05,
|
70 |
+
"loss": 4.791,
|
71 |
+
"step": 20000
|
72 |
+
},
|
73 |
+
{
|
74 |
+
"epoch": 3.4464931931759435,
|
75 |
+
"eval_accuracy": 0.6468589272593681,
|
76 |
+
"eval_loss": 1.8286069631576538,
|
77 |
+
"eval_runtime": 35.9342,
|
78 |
+
"eval_samples_per_second": 271.997,
|
79 |
+
"eval_steps_per_second": 17.003,
|
80 |
+
"step": 20000
|
81 |
+
},
|
82 |
+
{
|
83 |
+
"epoch": 4.30811649146993,
|
84 |
+
"grad_norm": 4.629519462585449,
|
85 |
+
"learning_rate": 1.897294502843357e-05,
|
86 |
+
"loss": 4.6538,
|
87 |
+
"step": 25000
|
88 |
+
},
|
89 |
+
{
|
90 |
+
"epoch": 4.30811649146993,
|
91 |
+
"eval_accuracy": 0.6644416567883901,
|
92 |
+
"eval_loss": 1.714424967765808,
|
93 |
+
"eval_runtime": 35.6122,
|
94 |
+
"eval_samples_per_second": 274.456,
|
95 |
+
"eval_steps_per_second": 17.157,
|
96 |
+
"step": 25000
|
97 |
+
},
|
98 |
+
{
|
99 |
+
"epoch": 5.1697397897639155,
|
100 |
+
"grad_norm": 3.993448257446289,
|
101 |
+
"learning_rate": 1.6100867367453616e-05,
|
102 |
+
"loss": 4.5846,
|
103 |
+
"step": 30000
|
104 |
+
},
|
105 |
+
{
|
106 |
+
"epoch": 5.1697397897639155,
|
107 |
+
"eval_accuracy": 0.6703549228453575,
|
108 |
+
"eval_loss": 1.6779303550720215,
|
109 |
+
"eval_runtime": 36.1572,
|
110 |
+
"eval_samples_per_second": 270.32,
|
111 |
+
"eval_steps_per_second": 16.898,
|
112 |
+
"step": 30000
|
113 |
+
},
|
114 |
+
{
|
115 |
+
"epoch": 6.031363088057901,
|
116 |
+
"grad_norm": 4.6959357261657715,
|
117 |
+
"learning_rate": 1.3228789706473663e-05,
|
118 |
+
"loss": 4.5568,
|
119 |
+
"step": 35000
|
120 |
+
},
|
121 |
+
{
|
122 |
+
"epoch": 6.031363088057901,
|
123 |
+
"eval_accuracy": 0.6765665494261385,
|
124 |
+
"eval_loss": 1.6362268924713135,
|
125 |
+
"eval_runtime": 36.2906,
|
126 |
+
"eval_samples_per_second": 269.326,
|
127 |
+
"eval_steps_per_second": 16.836,
|
128 |
+
"step": 35000
|
129 |
+
},
|
130 |
+
{
|
131 |
+
"epoch": 6.892986386351887,
|
132 |
+
"grad_norm": 4.4082441329956055,
|
133 |
+
"learning_rate": 1.035671204549371e-05,
|
134 |
+
"loss": 4.5079,
|
135 |
+
"step": 40000
|
136 |
+
},
|
137 |
+
{
|
138 |
+
"epoch": 6.892986386351887,
|
139 |
+
"eval_accuracy": 0.681425908452811,
|
140 |
+
"eval_loss": 1.6008453369140625,
|
141 |
+
"eval_runtime": 36.1284,
|
142 |
+
"eval_samples_per_second": 270.535,
|
143 |
+
"eval_steps_per_second": 16.912,
|
144 |
+
"step": 40000
|
145 |
+
},
|
146 |
+
{
|
147 |
+
"epoch": 7.754609684645873,
|
148 |
+
"grad_norm": 5.832913398742676,
|
149 |
+
"learning_rate": 7.484634384513757e-06,
|
150 |
+
"loss": 4.469,
|
151 |
+
"step": 45000
|
152 |
+
},
|
153 |
+
{
|
154 |
+
"epoch": 7.754609684645873,
|
155 |
+
"eval_accuracy": 0.6805218690729352,
|
156 |
+
"eval_loss": 1.6063588857650757,
|
157 |
+
"eval_runtime": 36.0752,
|
158 |
+
"eval_samples_per_second": 270.934,
|
159 |
+
"eval_steps_per_second": 16.937,
|
160 |
+
"step": 45000
|
161 |
+
},
|
162 |
+
{
|
163 |
+
"epoch": 8.61623298293986,
|
164 |
+
"grad_norm": 3.991995096206665,
|
165 |
+
"learning_rate": 4.612556723533804e-06,
|
166 |
+
"loss": 4.4514,
|
167 |
+
"step": 50000
|
168 |
+
},
|
169 |
+
{
|
170 |
+
"epoch": 8.61623298293986,
|
171 |
+
"eval_accuracy": 0.6852411542306852,
|
172 |
+
"eval_loss": 1.5799689292907715,
|
173 |
+
"eval_runtime": 37.5803,
|
174 |
+
"eval_samples_per_second": 260.083,
|
175 |
+
"eval_steps_per_second": 16.259,
|
176 |
+
"step": 50000
|
177 |
+
},
|
178 |
+
{
|
179 |
+
"epoch": 9.477856281233844,
|
180 |
+
"grad_norm": 4.424502849578857,
|
181 |
+
"learning_rate": 1.7404790625538515e-06,
|
182 |
+
"loss": 4.4317,
|
183 |
+
"step": 55000
|
184 |
+
},
|
185 |
+
{
|
186 |
+
"epoch": 9.477856281233844,
|
187 |
+
"eval_accuracy": 0.6879923855830649,
|
188 |
+
"eval_loss": 1.5539859533309937,
|
189 |
+
"eval_runtime": 35.7439,
|
190 |
+
"eval_samples_per_second": 273.445,
|
191 |
+
"eval_steps_per_second": 17.094,
|
192 |
+
"step": 55000
|
193 |
+
},
|
194 |
+
{
|
195 |
+
"epoch": 10.0,
|
196 |
+
"step": 58030,
|
197 |
+
"total_flos": 0.0,
|
198 |
+
"train_loss": 4.85471958516693,
|
199 |
+
"train_runtime": 21406.4835,
|
200 |
+
"train_samples_per_second": 86.742,
|
201 |
+
"train_steps_per_second": 2.711
|
202 |
+
}
|
203 |
+
],
|
204 |
+
"logging_steps": 5000,
|
205 |
+
"max_steps": 58030,
|
206 |
+
"num_input_tokens_seen": 0,
|
207 |
+
"num_train_epochs": 10,
|
208 |
+
"save_steps": 5000,
|
209 |
+
"total_flos": 0.0,
|
210 |
+
"train_batch_size": 32,
|
211 |
+
"trial_name": null,
|
212 |
+
"trial_params": null
|
213 |
+
}
|