tmnam20 commited on
Commit
4ee231e
·
verified ·
1 Parent(s): 70d36c0

Model save

Browse files
Files changed (1) hide show
  1. README.md +70 -0
README.md ADDED
@@ -0,0 +1,70 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: demdecuong/vihealthbert-base-word
3
+ tags:
4
+ - generated_from_trainer
5
+ metrics:
6
+ - accuracy
7
+ model-index:
8
+ - name: vihealthbert-w_unsup-SynPD
9
+ results: []
10
+ ---
11
+
12
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
13
+ should probably proofread and complete it, then remove this comment. -->
14
+
15
+ # vihealthbert-w_unsup-SynPD
16
+
17
+ This model is a fine-tuned version of [demdecuong/vihealthbert-base-word](https://huggingface.co/demdecuong/vihealthbert-base-word) on an unknown dataset.
18
+ It achieves the following results on the evaluation set:
19
+ - Loss: 1.5540
20
+ - Accuracy: 0.6880
21
+
22
+ ## Model description
23
+
24
+ More information needed
25
+
26
+ ## Intended uses & limitations
27
+
28
+ More information needed
29
+
30
+ ## Training and evaluation data
31
+
32
+ More information needed
33
+
34
+ ## Training procedure
35
+
36
+ ### Training hyperparameters
37
+
38
+ The following hyperparameters were used during training:
39
+ - learning_rate: 3e-05
40
+ - train_batch_size: 32
41
+ - eval_batch_size: 16
42
+ - seed: 21363
43
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
44
+ - lr_scheduler_type: linear
45
+ - lr_scheduler_warmup_ratio: 0.1
46
+ - num_epochs: 10.0
47
+
48
+ ### Training results
49
+
50
+ | Training Loss | Epoch | Step | Validation Loss | Accuracy |
51
+ |:-------------:|:------:|:-----:|:---------------:|:--------:|
52
+ | 7.0234 | 0.8616 | 5000 | 2.5909 | 0.5576 |
53
+ | 5.2736 | 1.7232 | 10000 | 2.1890 | 0.5962 |
54
+ | 4.9126 | 2.5849 | 15000 | 1.9095 | 0.6381 |
55
+ | 4.791 | 3.4465 | 20000 | 1.8286 | 0.6469 |
56
+ | 4.6538 | 4.3081 | 25000 | 1.7144 | 0.6644 |
57
+ | 4.5846 | 5.1697 | 30000 | 1.6779 | 0.6704 |
58
+ | 4.5568 | 6.0314 | 35000 | 1.6362 | 0.6766 |
59
+ | 4.5079 | 6.8930 | 40000 | 1.6008 | 0.6814 |
60
+ | 4.469 | 7.7546 | 45000 | 1.6064 | 0.6805 |
61
+ | 4.4514 | 8.6162 | 50000 | 1.5800 | 0.6852 |
62
+ | 4.4317 | 9.4779 | 55000 | 1.5540 | 0.6880 |
63
+
64
+
65
+ ### Framework versions
66
+
67
+ - Transformers 4.40.2
68
+ - Pytorch 2.0.1+cu118
69
+ - Datasets 2.19.1
70
+ - Tokenizers 0.19.1