Model save
Browse files
README.md
ADDED
@@ -0,0 +1,70 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
base_model: demdecuong/vihealthbert-base-word
|
3 |
+
tags:
|
4 |
+
- generated_from_trainer
|
5 |
+
metrics:
|
6 |
+
- accuracy
|
7 |
+
model-index:
|
8 |
+
- name: vihealthbert-w_unsup-SynPD
|
9 |
+
results: []
|
10 |
+
---
|
11 |
+
|
12 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
13 |
+
should probably proofread and complete it, then remove this comment. -->
|
14 |
+
|
15 |
+
# vihealthbert-w_unsup-SynPD
|
16 |
+
|
17 |
+
This model is a fine-tuned version of [demdecuong/vihealthbert-base-word](https://huggingface.co/demdecuong/vihealthbert-base-word) on an unknown dataset.
|
18 |
+
It achieves the following results on the evaluation set:
|
19 |
+
- Loss: 1.5540
|
20 |
+
- Accuracy: 0.6880
|
21 |
+
|
22 |
+
## Model description
|
23 |
+
|
24 |
+
More information needed
|
25 |
+
|
26 |
+
## Intended uses & limitations
|
27 |
+
|
28 |
+
More information needed
|
29 |
+
|
30 |
+
## Training and evaluation data
|
31 |
+
|
32 |
+
More information needed
|
33 |
+
|
34 |
+
## Training procedure
|
35 |
+
|
36 |
+
### Training hyperparameters
|
37 |
+
|
38 |
+
The following hyperparameters were used during training:
|
39 |
+
- learning_rate: 3e-05
|
40 |
+
- train_batch_size: 32
|
41 |
+
- eval_batch_size: 16
|
42 |
+
- seed: 21363
|
43 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
44 |
+
- lr_scheduler_type: linear
|
45 |
+
- lr_scheduler_warmup_ratio: 0.1
|
46 |
+
- num_epochs: 10.0
|
47 |
+
|
48 |
+
### Training results
|
49 |
+
|
50 |
+
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|
51 |
+
|:-------------:|:------:|:-----:|:---------------:|:--------:|
|
52 |
+
| 7.0234 | 0.8616 | 5000 | 2.5909 | 0.5576 |
|
53 |
+
| 5.2736 | 1.7232 | 10000 | 2.1890 | 0.5962 |
|
54 |
+
| 4.9126 | 2.5849 | 15000 | 1.9095 | 0.6381 |
|
55 |
+
| 4.791 | 3.4465 | 20000 | 1.8286 | 0.6469 |
|
56 |
+
| 4.6538 | 4.3081 | 25000 | 1.7144 | 0.6644 |
|
57 |
+
| 4.5846 | 5.1697 | 30000 | 1.6779 | 0.6704 |
|
58 |
+
| 4.5568 | 6.0314 | 35000 | 1.6362 | 0.6766 |
|
59 |
+
| 4.5079 | 6.8930 | 40000 | 1.6008 | 0.6814 |
|
60 |
+
| 4.469 | 7.7546 | 45000 | 1.6064 | 0.6805 |
|
61 |
+
| 4.4514 | 8.6162 | 50000 | 1.5800 | 0.6852 |
|
62 |
+
| 4.4317 | 9.4779 | 55000 | 1.5540 | 0.6880 |
|
63 |
+
|
64 |
+
|
65 |
+
### Framework versions
|
66 |
+
|
67 |
+
- Transformers 4.40.2
|
68 |
+
- Pytorch 2.0.1+cu118
|
69 |
+
- Datasets 2.19.1
|
70 |
+
- Tokenizers 0.19.1
|