thelikhit's picture
End of training
40d9c86 verified
metadata
library_name: transformers
license: apache-2.0
base_model: facebook/hubert-base-ls960
tags:
  - generated_from_trainer
datasets:
  - gtzan
metrics:
  - accuracy
model-index:
  - name: hubert-test-model
    results:
      - task:
          name: Audio Classification
          type: audio-classification
        dataset:
          name: gtzan
          type: gtzan
          config: default
          split: train
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.785

hubert-test-model

This model is a fine-tuned version of facebook/hubert-base-ls960 on the gtzan dataset. It achieves the following results on the evaluation set:

  • Loss: 1.5276
  • Accuracy: 0.785

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 42
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 20
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Accuracy
No log 1.0 150 2.0494 0.29
No log 2.0 300 2.1993 0.19
No log 3.0 450 1.8439 0.44
1.9218 4.0 600 1.5277 0.48
1.9218 5.0 750 1.4164 0.475
1.9218 6.0 900 1.3641 0.63
1.2685 7.0 1050 1.1557 0.675
1.2685 8.0 1200 1.0935 0.72
1.2685 9.0 1350 1.0594 0.71
0.7151 10.0 1500 1.0119 0.735
0.7151 11.0 1650 1.0868 0.77
0.7151 12.0 1800 1.3736 0.75
0.7151 13.0 1950 1.2705 0.77
0.4135 14.0 2100 1.4052 0.76
0.4135 15.0 2250 1.3864 0.77
0.4135 16.0 2400 1.4296 0.785
0.2311 17.0 2550 1.5663 0.77
0.2311 18.0 2700 1.5310 0.78
0.2311 19.0 2850 1.4884 0.795
0.1408 20.0 3000 1.5276 0.785

Framework versions

  • Transformers 4.46.2
  • Pytorch 2.5.1+cu121
  • Datasets 3.1.0
  • Tokenizers 0.20.3