--- library_name: transformers license: apache-2.0 base_model: facebook/hubert-base-ls960 tags: - generated_from_trainer datasets: - gtzan metrics: - accuracy model-index: - name: hubert-test-model results: - task: name: Audio Classification type: audio-classification dataset: name: gtzan type: gtzan config: default split: train args: default metrics: - name: Accuracy type: accuracy value: 0.785 --- # hubert-test-model This model is a fine-tuned version of [facebook/hubert-base-ls960](https://huggingface.co/facebook/hubert-base-ls960) on the gtzan dataset. It achieves the following results on the evaluation set: - Loss: 1.5276 - Accuracy: 0.785 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 20 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 150 | 2.0494 | 0.29 | | No log | 2.0 | 300 | 2.1993 | 0.19 | | No log | 3.0 | 450 | 1.8439 | 0.44 | | 1.9218 | 4.0 | 600 | 1.5277 | 0.48 | | 1.9218 | 5.0 | 750 | 1.4164 | 0.475 | | 1.9218 | 6.0 | 900 | 1.3641 | 0.63 | | 1.2685 | 7.0 | 1050 | 1.1557 | 0.675 | | 1.2685 | 8.0 | 1200 | 1.0935 | 0.72 | | 1.2685 | 9.0 | 1350 | 1.0594 | 0.71 | | 0.7151 | 10.0 | 1500 | 1.0119 | 0.735 | | 0.7151 | 11.0 | 1650 | 1.0868 | 0.77 | | 0.7151 | 12.0 | 1800 | 1.3736 | 0.75 | | 0.7151 | 13.0 | 1950 | 1.2705 | 0.77 | | 0.4135 | 14.0 | 2100 | 1.4052 | 0.76 | | 0.4135 | 15.0 | 2250 | 1.3864 | 0.77 | | 0.4135 | 16.0 | 2400 | 1.4296 | 0.785 | | 0.2311 | 17.0 | 2550 | 1.5663 | 0.77 | | 0.2311 | 18.0 | 2700 | 1.5310 | 0.78 | | 0.2311 | 19.0 | 2850 | 1.4884 | 0.795 | | 0.1408 | 20.0 | 3000 | 1.5276 | 0.785 | ### Framework versions - Transformers 4.46.2 - Pytorch 2.5.1+cu121 - Datasets 3.1.0 - Tokenizers 0.20.3