theCuiCoders's picture
End of training
53e5539 verified
|
raw
history blame
2.5 kB
metadata
language:
  - nl
license: apache-2.0
base_model: bert-base-uncased
tags:
  - abc
  - generated_from_trainer
datasets:
  - stsb_multi_mt
metrics:
  - accuracy
model-index:
  - name: bert-base-uncased-FinedTuned
    results: []

bert-base-uncased-FinedTuned

This model is a fine-tuned version of bert-base-uncased on the stsb_multi_mt dataset. It achieves the following results on the evaluation set:

  • Loss: 2.6888
  • Accuracy: 0.1762

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 32
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 1000
  • training_steps: 15000
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Accuracy
0.1203 5.5556 1000 2.7894 0.1762
0.089 11.1111 2000 2.7816 0.1762
0.095 16.6667 3000 2.7732 0.1762
0.0818 22.2222 4000 2.7201 0.1762
0.0786 27.7778 5000 2.6378 0.1762
0.0816 33.3333 6000 2.7167 0.1762
0.0795 38.8889 7000 2.6429 0.1762
0.0978 44.4444 8000 2.6964 0.1762
0.1006 50.0 9000 2.7168 0.1762
0.171 55.5556 10000 2.7183 0.1762
0.1185 61.1111 11000 2.6737 0.1762
0.1648 66.6667 12000 2.6573 0.1762
0.1365 72.2222 13000 2.6944 0.1762
0.1298 77.7778 14000 2.6950 0.1762
0.1832 83.3333 15000 2.6888 0.1762

Framework versions

  • Transformers 4.41.2
  • Pytorch 2.3.1+cu121
  • Datasets 2.19.2
  • Tokenizers 0.19.1