File size: 2,496 Bytes
e3d6e26 53e5539 e3d6e26 ca4afb5 53e5539 e3d6e26 3ed0eea 53e5539 e3d6e26 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 |
---
language:
- nl
license: apache-2.0
base_model: bert-base-uncased
tags:
- abc
- generated_from_trainer
datasets:
- stsb_multi_mt
metrics:
- accuracy
model-index:
- name: bert-base-uncased-FinedTuned
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# bert-base-uncased-FinedTuned
This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the stsb_multi_mt dataset.
It achieves the following results on the evaluation set:
- Loss: 2.6888
- Accuracy: 0.1762
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 1000
- training_steps: 15000
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-------:|:-----:|:---------------:|:--------:|
| 0.1203 | 5.5556 | 1000 | 2.7894 | 0.1762 |
| 0.089 | 11.1111 | 2000 | 2.7816 | 0.1762 |
| 0.095 | 16.6667 | 3000 | 2.7732 | 0.1762 |
| 0.0818 | 22.2222 | 4000 | 2.7201 | 0.1762 |
| 0.0786 | 27.7778 | 5000 | 2.6378 | 0.1762 |
| 0.0816 | 33.3333 | 6000 | 2.7167 | 0.1762 |
| 0.0795 | 38.8889 | 7000 | 2.6429 | 0.1762 |
| 0.0978 | 44.4444 | 8000 | 2.6964 | 0.1762 |
| 0.1006 | 50.0 | 9000 | 2.7168 | 0.1762 |
| 0.171 | 55.5556 | 10000 | 2.7183 | 0.1762 |
| 0.1185 | 61.1111 | 11000 | 2.6737 | 0.1762 |
| 0.1648 | 66.6667 | 12000 | 2.6573 | 0.1762 |
| 0.1365 | 72.2222 | 13000 | 2.6944 | 0.1762 |
| 0.1298 | 77.7778 | 14000 | 2.6950 | 0.1762 |
| 0.1832 | 83.3333 | 15000 | 2.6888 | 0.1762 |
### Framework versions
- Transformers 4.41.2
- Pytorch 2.3.1+cu121
- Datasets 2.19.2
- Tokenizers 0.19.1
|