tessimago's picture
Add new SentenceTransformer model.
fe225eb verified
metadata
base_model: BAAI/bge-large-en-v1.5
language:
  - en
library_name: sentence-transformers
license: apache-2.0
metrics:
  - cosine_accuracy@1
  - cosine_accuracy@3
  - cosine_accuracy@5
  - cosine_accuracy@10
  - cosine_precision@1
  - cosine_precision@3
  - cosine_precision@5
  - cosine_precision@10
  - cosine_recall@1
  - cosine_recall@3
  - cosine_recall@5
  - cosine_recall@10
  - cosine_ndcg@10
  - cosine_mrr@10
  - cosine_map@100
pipeline_tag: sentence-similarity
tags:
  - sentence-transformers
  - sentence-similarity
  - feature-extraction
  - generated_from_trainer
  - dataset_size:1024
  - loss:MatryoshkaLoss
  - loss:MultipleNegativesRankingLoss
widget:
  - source_sentence: >-
      After rescue, survivors may require hospital treatment. This must be
      provided as quickly as possible. The SMC should consider having ambulance
      and hospital facilities ready.
    sentences:
      - What should the SMC consider having ready after a rescue?
      - What is critical for mass rescue operations?
      - >-
        What can computer programs do to relieve the search planner of
        computational burden?
  - source_sentence: >-
      SMCs conduct communication searches when facts are needed to supplement
      initially reported information. Efforts are continued to contact the
      craft, to find out more about a possible distress situation, and to
      prepare for or to avoid a search effort. Section 3.5 has more information
      on communication searches.MEDICO Communications
    sentences:
      - >-
        What is generally produced by dead-reckoning navigation alone for search
        aircraft?
      - >-
        What should be the widths of rectangular areas to be covered with a PS
        pattern and the lengths of rectangular areas to be covered with a CS
        pattern?
      - What is the purpose of SMCs conducting communication searches?
  - source_sentence: >-
      SAR facilities include designated SRUs and other resources which can be
      used to conduct or support SAR operations. An SRU is a unit composed of
      trained personnel and provided with equipment suitable for the expeditious
      and efficient conduct of search and rescue. An SRU can be an air,
      maritime, or land-based facility. Facilities selected as SRUs should be
      able to reach the scene of distress quickly and, in particular, be
      suitable for one or more of the following operations:– providing
      assistance to prevent or reduce the severity of accidents and the hardship
      of survivors, e.g., escorting an aircraft, standing by a sinking vessel;–
      conducting a search;– delivering supplies and survival equipment to the
      scene;– rescuing survivors;– providing food, medical or other initial
      needs of survivors; and– delivering the survivors to a place of safety. 
    sentences:
      - >-
        What are the types of SAR facilities that can be used to conduct or
        support SAR operations?
      - >-
        What is the scenario in which a simulated communication search is
        carried out and an air search is planned?
      - What is discussed in detail in various other places in this Manual?
  - source_sentence: >-
      Support facilities enable the operational response resources (e.g., the
      RCC and SRUs) to provide the SAR services. Without the supporting
      resources, the operational resources cannot sustain effective operations.
      There is a wide range of support facilities and services, which include
      the following:Training facilities Facility maintenanceCommunications
      facilities Management functionsNavigation systems Research and
      developmentSAR data providers (SDPs) PlanningMedical facilities
      ExercisesAircraft landing fields Refuelling servicesVoluntary services
      (e.g., Red Cross) Critical incident stress counsellors Computer resources
    sentences:
      - How many ways are there to train SAR specialists and teams?
      - What types of support facilities are mentioned in the context?
      - What is the duration of a prolonged blast?
  - source_sentence: >-
      Sound funding decisions arise out of accurate assessments made of the SAR
      system. To measure the performance or effectiveness of a SAR system
      usually requires collecting information or statistics and establishing
      agreed-upon goals. All pertinent information should be collected,
      including where the system failed to perform as it should have; failures
      and successes provide valuable information in assessing effectiveness and
      determining means to improve. 
    sentences:
      - >-
        What is required to measure the performance or effectiveness of a SAR
        system?
      - What is the purpose of having an SRR?
      - >-
        What is the effect of decreasing track spacing on the area that can be
        searched?
model-index:
  - name: BGE base Financial Matryoshka
    results:
      - task:
          type: information-retrieval
          name: Information Retrieval
        dataset:
          name: dim 768
          type: dim_768
        metrics:
          - type: cosine_accuracy@1
            value: 0.7631578947368421
            name: Cosine Accuracy@1
          - type: cosine_accuracy@3
            value: 0.9122807017543859
            name: Cosine Accuracy@3
          - type: cosine_accuracy@5
            value: 0.9385964912280702
            name: Cosine Accuracy@5
          - type: cosine_accuracy@10
            value: 0.9912280701754386
            name: Cosine Accuracy@10
          - type: cosine_precision@1
            value: 0.7631578947368421
            name: Cosine Precision@1
          - type: cosine_precision@3
            value: 0.30409356725146197
            name: Cosine Precision@3
          - type: cosine_precision@5
            value: 0.18771929824561404
            name: Cosine Precision@5
          - type: cosine_precision@10
            value: 0.09912280701754386
            name: Cosine Precision@10
          - type: cosine_recall@1
            value: 0.7631578947368421
            name: Cosine Recall@1
          - type: cosine_recall@3
            value: 0.9122807017543859
            name: Cosine Recall@3
          - type: cosine_recall@5
            value: 0.9385964912280702
            name: Cosine Recall@5
          - type: cosine_recall@10
            value: 0.9912280701754386
            name: Cosine Recall@10
          - type: cosine_ndcg@10
            value: 0.8800566604626379
            name: Cosine Ndcg@10
          - type: cosine_mrr@10
            value: 0.8442112225006964
            name: Cosine Mrr@10
          - type: cosine_map@100
            value: 0.8449422166527428
            name: Cosine Map@100
      - task:
          type: information-retrieval
          name: Information Retrieval
        dataset:
          name: dim 512
          type: dim_512
        metrics:
          - type: cosine_accuracy@1
            value: 0.7456140350877193
            name: Cosine Accuracy@1
          - type: cosine_accuracy@3
            value: 0.9210526315789473
            name: Cosine Accuracy@3
          - type: cosine_accuracy@5
            value: 0.9385964912280702
            name: Cosine Accuracy@5
          - type: cosine_accuracy@10
            value: 0.9912280701754386
            name: Cosine Accuracy@10
          - type: cosine_precision@1
            value: 0.7456140350877193
            name: Cosine Precision@1
          - type: cosine_precision@3
            value: 0.30701754385964913
            name: Cosine Precision@3
          - type: cosine_precision@5
            value: 0.18771929824561404
            name: Cosine Precision@5
          - type: cosine_precision@10
            value: 0.09912280701754386
            name: Cosine Precision@10
          - type: cosine_recall@1
            value: 0.7456140350877193
            name: Cosine Recall@1
          - type: cosine_recall@3
            value: 0.9210526315789473
            name: Cosine Recall@3
          - type: cosine_recall@5
            value: 0.9385964912280702
            name: Cosine Recall@5
          - type: cosine_recall@10
            value: 0.9912280701754386
            name: Cosine Recall@10
          - type: cosine_ndcg@10
            value: 0.8757357824813555
            name: Cosine Ndcg@10
          - type: cosine_mrr@10
            value: 0.8383040935672514
            name: Cosine Mrr@10
          - type: cosine_map@100
            value: 0.8389306599832915
            name: Cosine Map@100
      - task:
          type: information-retrieval
          name: Information Retrieval
        dataset:
          name: dim 256
          type: dim_256
        metrics:
          - type: cosine_accuracy@1
            value: 0.7280701754385965
            name: Cosine Accuracy@1
          - type: cosine_accuracy@3
            value: 0.8947368421052632
            name: Cosine Accuracy@3
          - type: cosine_accuracy@5
            value: 0.9385964912280702
            name: Cosine Accuracy@5
          - type: cosine_accuracy@10
            value: 0.956140350877193
            name: Cosine Accuracy@10
          - type: cosine_precision@1
            value: 0.7280701754385965
            name: Cosine Precision@1
          - type: cosine_precision@3
            value: 0.2982456140350877
            name: Cosine Precision@3
          - type: cosine_precision@5
            value: 0.18771929824561406
            name: Cosine Precision@5
          - type: cosine_precision@10
            value: 0.0956140350877193
            name: Cosine Precision@10
          - type: cosine_recall@1
            value: 0.7280701754385965
            name: Cosine Recall@1
          - type: cosine_recall@3
            value: 0.8947368421052632
            name: Cosine Recall@3
          - type: cosine_recall@5
            value: 0.9385964912280702
            name: Cosine Recall@5
          - type: cosine_recall@10
            value: 0.956140350877193
            name: Cosine Recall@10
          - type: cosine_ndcg@10
            value: 0.8514949465138896
            name: Cosine Ndcg@10
          - type: cosine_mrr@10
            value: 0.8167397660818715
            name: Cosine Mrr@10
          - type: cosine_map@100
            value: 0.8197472848788638
            name: Cosine Map@100
      - task:
          type: information-retrieval
          name: Information Retrieval
        dataset:
          name: dim 128
          type: dim_128
        metrics:
          - type: cosine_accuracy@1
            value: 0.6842105263157895
            name: Cosine Accuracy@1
          - type: cosine_accuracy@3
            value: 0.8596491228070176
            name: Cosine Accuracy@3
          - type: cosine_accuracy@5
            value: 0.8947368421052632
            name: Cosine Accuracy@5
          - type: cosine_accuracy@10
            value: 0.9385964912280702
            name: Cosine Accuracy@10
          - type: cosine_precision@1
            value: 0.6842105263157895
            name: Cosine Precision@1
          - type: cosine_precision@3
            value: 0.28654970760233917
            name: Cosine Precision@3
          - type: cosine_precision@5
            value: 0.17894736842105263
            name: Cosine Precision@5
          - type: cosine_precision@10
            value: 0.09385964912280703
            name: Cosine Precision@10
          - type: cosine_recall@1
            value: 0.6842105263157895
            name: Cosine Recall@1
          - type: cosine_recall@3
            value: 0.8596491228070176
            name: Cosine Recall@3
          - type: cosine_recall@5
            value: 0.8947368421052632
            name: Cosine Recall@5
          - type: cosine_recall@10
            value: 0.9385964912280702
            name: Cosine Recall@10
          - type: cosine_ndcg@10
            value: 0.8139200097505314
            name: Cosine Ndcg@10
          - type: cosine_mrr@10
            value: 0.7736702868281816
            name: Cosine Mrr@10
          - type: cosine_map@100
            value: 0.7777583689864392
            name: Cosine Map@100
      - task:
          type: information-retrieval
          name: Information Retrieval
        dataset:
          name: dim 64
          type: dim_64
        metrics:
          - type: cosine_accuracy@1
            value: 0.6140350877192983
            name: Cosine Accuracy@1
          - type: cosine_accuracy@3
            value: 0.7456140350877193
            name: Cosine Accuracy@3
          - type: cosine_accuracy@5
            value: 0.8245614035087719
            name: Cosine Accuracy@5
          - type: cosine_accuracy@10
            value: 0.8947368421052632
            name: Cosine Accuracy@10
          - type: cosine_precision@1
            value: 0.6140350877192983
            name: Cosine Precision@1
          - type: cosine_precision@3
            value: 0.24853801169590642
            name: Cosine Precision@3
          - type: cosine_precision@5
            value: 0.16491228070175437
            name: Cosine Precision@5
          - type: cosine_precision@10
            value: 0.08947368421052632
            name: Cosine Precision@10
          - type: cosine_recall@1
            value: 0.6140350877192983
            name: Cosine Recall@1
          - type: cosine_recall@3
            value: 0.7456140350877193
            name: Cosine Recall@3
          - type: cosine_recall@5
            value: 0.8245614035087719
            name: Cosine Recall@5
          - type: cosine_recall@10
            value: 0.8947368421052632
            name: Cosine Recall@10
          - type: cosine_ndcg@10
            value: 0.7479917679807845
            name: Cosine Ndcg@10
          - type: cosine_mrr@10
            value: 0.7017961570593151
            name: Cosine Mrr@10
          - type: cosine_map@100
            value: 0.7073668567988093
            name: Cosine Map@100

BGE base Financial Matryoshka

This is a sentence-transformers model finetuned from BAAI/bge-large-en-v1.5 on the json dataset. It maps sentences & paragraphs to a 1024-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

Model Details

Model Description

  • Model Type: Sentence Transformer
  • Base model: BAAI/bge-large-en-v1.5
  • Maximum Sequence Length: 512 tokens
  • Output Dimensionality: 1024 tokens
  • Similarity Function: Cosine Similarity
  • Training Dataset:
    • json
  • Language: en
  • License: apache-2.0

Model Sources

Full Model Architecture

SentenceTransformer(
  (0): Transformer({'max_seq_length': 512, 'do_lower_case': True}) with Transformer model: BertModel 
  (1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
  (2): Normalize()
)

Usage

Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

pip install -U sentence-transformers

Then you can load this model and run inference.

from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("tessimago/bge-large-repmus-matryoshka")
# Run inference
sentences = [
    'Sound funding decisions arise out of accurate assessments made of the SAR system. To measure the performance or effectiveness of a SAR system usually requires collecting information or statistics and establishing agreed-upon goals. All pertinent information should be collected, including where the system failed to perform as it should have; failures and successes provide valuable information in assessing effectiveness and determining means to improve. ',
    'What is required to measure the performance or effectiveness of a SAR system?',
    'What is the effect of decreasing track spacing on the area that can be searched?',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 1024]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]

Evaluation

Metrics

Information Retrieval

Metric Value
cosine_accuracy@1 0.7632
cosine_accuracy@3 0.9123
cosine_accuracy@5 0.9386
cosine_accuracy@10 0.9912
cosine_precision@1 0.7632
cosine_precision@3 0.3041
cosine_precision@5 0.1877
cosine_precision@10 0.0991
cosine_recall@1 0.7632
cosine_recall@3 0.9123
cosine_recall@5 0.9386
cosine_recall@10 0.9912
cosine_ndcg@10 0.8801
cosine_mrr@10 0.8442
cosine_map@100 0.8449

Information Retrieval

Metric Value
cosine_accuracy@1 0.7456
cosine_accuracy@3 0.9211
cosine_accuracy@5 0.9386
cosine_accuracy@10 0.9912
cosine_precision@1 0.7456
cosine_precision@3 0.307
cosine_precision@5 0.1877
cosine_precision@10 0.0991
cosine_recall@1 0.7456
cosine_recall@3 0.9211
cosine_recall@5 0.9386
cosine_recall@10 0.9912
cosine_ndcg@10 0.8757
cosine_mrr@10 0.8383
cosine_map@100 0.8389

Information Retrieval

Metric Value
cosine_accuracy@1 0.7281
cosine_accuracy@3 0.8947
cosine_accuracy@5 0.9386
cosine_accuracy@10 0.9561
cosine_precision@1 0.7281
cosine_precision@3 0.2982
cosine_precision@5 0.1877
cosine_precision@10 0.0956
cosine_recall@1 0.7281
cosine_recall@3 0.8947
cosine_recall@5 0.9386
cosine_recall@10 0.9561
cosine_ndcg@10 0.8515
cosine_mrr@10 0.8167
cosine_map@100 0.8197

Information Retrieval

Metric Value
cosine_accuracy@1 0.6842
cosine_accuracy@3 0.8596
cosine_accuracy@5 0.8947
cosine_accuracy@10 0.9386
cosine_precision@1 0.6842
cosine_precision@3 0.2865
cosine_precision@5 0.1789
cosine_precision@10 0.0939
cosine_recall@1 0.6842
cosine_recall@3 0.8596
cosine_recall@5 0.8947
cosine_recall@10 0.9386
cosine_ndcg@10 0.8139
cosine_mrr@10 0.7737
cosine_map@100 0.7778

Information Retrieval

Metric Value
cosine_accuracy@1 0.614
cosine_accuracy@3 0.7456
cosine_accuracy@5 0.8246
cosine_accuracy@10 0.8947
cosine_precision@1 0.614
cosine_precision@3 0.2485
cosine_precision@5 0.1649
cosine_precision@10 0.0895
cosine_recall@1 0.614
cosine_recall@3 0.7456
cosine_recall@5 0.8246
cosine_recall@10 0.8947
cosine_ndcg@10 0.748
cosine_mrr@10 0.7018
cosine_map@100 0.7074

Training Details

Training Dataset

json

  • Dataset: json
  • Size: 1,024 training samples
  • Columns: positive and anchor
  • Approximate statistics based on the first 1000 samples:
    positive anchor
    type string string
    details
    • min: 10 tokens
    • mean: 133.58 tokens
    • max: 512 tokens
    • min: 7 tokens
    • mean: 17.7 tokens
    • max: 39 tokens
  • Samples:
    positive anchor
    The debriefing helps to ensure that all survivors are rescued, to attend to the physical welfare of each survivor, and to obtain information which may assist and improve SAR services. Proper debriefing techniques include:– due care to avoid worsening a survivor’s condition by excessive debriefing;– careful assessment of the survivor’s statements if the survivor is frightened or excited;– use of a calm voice in questioning;– avoidance of suggesting the answers when obtaining facts; and– explaining that the information requested is important for the success of the SAR operation, and possibly for future SAR operations. What are some proper debriefing techniques used in SAR services?
    Communicating with passengers is more difficult in remote areas where phone service may be inadequate or lacking. If phones do exist, calling the airline or shipping company may be the best way to check in and find out information. In more populated areas, local agencies may have an emergency evacuation plan or other useful plan that can be implemented.IE961E.indb 21 6/28/2013 10:29:55 AM What is a good way to check in and find out information in remote areas where phone service may be inadequate or lacking?
    Voice communication is the basis of telemedical advice. It allows free dialogue and contributes to the human relationship, which is crucial to any medical consultation. Text messages are a useful complement to the voice telemedical advice and add the reliability of writing. Facsimile allows the exchange of pictures or diagrams, which help to identify a symptom, describe a lesion or the method of treatment. Digital data transmissions (photographs or electrocardiogram) provide an objective and potentially crucial addition to descriptive and subjective clinical data. What are the types of communication methods used in telemedical advice?
  • Loss: MatryoshkaLoss with these parameters:
    {
        "loss": "MultipleNegativesRankingLoss",
        "matryoshka_dims": [
            768,
            512,
            256,
            128,
            64
        ],
        "matryoshka_weights": [
            1,
            1,
            1,
            1,
            1
        ],
        "n_dims_per_step": -1
    }
    

Training Hyperparameters

Non-Default Hyperparameters

  • eval_strategy: epoch
  • per_device_train_batch_size: 32
  • per_device_eval_batch_size: 16
  • gradient_accumulation_steps: 16
  • learning_rate: 2e-05
  • num_train_epochs: 4
  • lr_scheduler_type: cosine
  • warmup_ratio: 0.1
  • bf16: True
  • tf32: True
  • load_best_model_at_end: True
  • optim: adamw_torch_fused
  • batch_sampler: no_duplicates

All Hyperparameters

Click to expand
  • overwrite_output_dir: False
  • do_predict: False
  • eval_strategy: epoch
  • prediction_loss_only: True
  • per_device_train_batch_size: 32
  • per_device_eval_batch_size: 16
  • per_gpu_train_batch_size: None
  • per_gpu_eval_batch_size: None
  • gradient_accumulation_steps: 16
  • eval_accumulation_steps: None
  • learning_rate: 2e-05
  • weight_decay: 0.0
  • adam_beta1: 0.9
  • adam_beta2: 0.999
  • adam_epsilon: 1e-08
  • max_grad_norm: 1.0
  • num_train_epochs: 4
  • max_steps: -1
  • lr_scheduler_type: cosine
  • lr_scheduler_kwargs: {}
  • warmup_ratio: 0.1
  • warmup_steps: 0
  • log_level: passive
  • log_level_replica: warning
  • log_on_each_node: True
  • logging_nan_inf_filter: True
  • save_safetensors: True
  • save_on_each_node: False
  • save_only_model: False
  • restore_callback_states_from_checkpoint: False
  • no_cuda: False
  • use_cpu: False
  • use_mps_device: False
  • seed: 42
  • data_seed: None
  • jit_mode_eval: False
  • use_ipex: False
  • bf16: True
  • fp16: False
  • fp16_opt_level: O1
  • half_precision_backend: auto
  • bf16_full_eval: False
  • fp16_full_eval: False
  • tf32: True
  • local_rank: 0
  • ddp_backend: None
  • tpu_num_cores: None
  • tpu_metrics_debug: False
  • debug: []
  • dataloader_drop_last: False
  • dataloader_num_workers: 0
  • dataloader_prefetch_factor: None
  • past_index: -1
  • disable_tqdm: False
  • remove_unused_columns: True
  • label_names: None
  • load_best_model_at_end: True
  • ignore_data_skip: False
  • fsdp: []
  • fsdp_min_num_params: 0
  • fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
  • fsdp_transformer_layer_cls_to_wrap: None
  • accelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
  • deepspeed: None
  • label_smoothing_factor: 0.0
  • optim: adamw_torch_fused
  • optim_args: None
  • adafactor: False
  • group_by_length: False
  • length_column_name: length
  • ddp_find_unused_parameters: None
  • ddp_bucket_cap_mb: None
  • ddp_broadcast_buffers: False
  • dataloader_pin_memory: True
  • dataloader_persistent_workers: False
  • skip_memory_metrics: True
  • use_legacy_prediction_loop: False
  • push_to_hub: False
  • resume_from_checkpoint: None
  • hub_model_id: None
  • hub_strategy: every_save
  • hub_private_repo: False
  • hub_always_push: False
  • gradient_checkpointing: False
  • gradient_checkpointing_kwargs: None
  • include_inputs_for_metrics: False
  • eval_do_concat_batches: True
  • fp16_backend: auto
  • push_to_hub_model_id: None
  • push_to_hub_organization: None
  • mp_parameters:
  • auto_find_batch_size: False
  • full_determinism: False
  • torchdynamo: None
  • ray_scope: last
  • ddp_timeout: 1800
  • torch_compile: False
  • torch_compile_backend: None
  • torch_compile_mode: None
  • dispatch_batches: None
  • split_batches: None
  • include_tokens_per_second: False
  • include_num_input_tokens_seen: False
  • neftune_noise_alpha: None
  • optim_target_modules: None
  • batch_eval_metrics: False
  • batch_sampler: no_duplicates
  • multi_dataset_batch_sampler: proportional

Training Logs

Epoch Step dim_128_cosine_map@100 dim_256_cosine_map@100 dim_512_cosine_map@100 dim_64_cosine_map@100 dim_768_cosine_map@100
1.0 2 0.7826 0.8163 0.8230 0.6761 0.8359
2.0 4 0.7739 0.8218 0.8282 0.6939 0.8459
3.0 6 0.7740 0.8223 0.8409 0.7072 0.8457
4.0 8 0.7778 0.8197 0.8389 0.7074 0.8449
  • The bold row denotes the saved checkpoint.

Framework Versions

  • Python: 3.10.14
  • Sentence Transformers: 3.1.0
  • Transformers: 4.41.2
  • PyTorch: 2.1.2+cu121
  • Accelerate: 0.34.2
  • Datasets: 2.19.1
  • Tokenizers: 0.19.1

Citation

BibTeX

Sentence Transformers

@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}

MatryoshkaLoss

@misc{kusupati2024matryoshka,
    title={Matryoshka Representation Learning},
    author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
    year={2024},
    eprint={2205.13147},
    archivePrefix={arXiv},
    primaryClass={cs.LG}
}

MultipleNegativesRankingLoss

@misc{henderson2017efficient,
    title={Efficient Natural Language Response Suggestion for Smart Reply},
    author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
    year={2017},
    eprint={1705.00652},
    archivePrefix={arXiv},
    primaryClass={cs.CL}
}