File size: 32,150 Bytes
fe225eb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 |
---
base_model: BAAI/bge-large-en-v1.5
language:
- en
library_name: sentence-transformers
license: apache-2.0
metrics:
- cosine_accuracy@1
- cosine_accuracy@3
- cosine_accuracy@5
- cosine_accuracy@10
- cosine_precision@1
- cosine_precision@3
- cosine_precision@5
- cosine_precision@10
- cosine_recall@1
- cosine_recall@3
- cosine_recall@5
- cosine_recall@10
- cosine_ndcg@10
- cosine_mrr@10
- cosine_map@100
pipeline_tag: sentence-similarity
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:1024
- loss:MatryoshkaLoss
- loss:MultipleNegativesRankingLoss
widget:
- source_sentence: After rescue, survivors may require hospital treatment. This must
be provided as quickly as possible. The SMC should consider having ambulance and
hospital facilities ready.
sentences:
- What should the SMC consider having ready after a rescue?
- What is critical for mass rescue operations?
- What can computer programs do to relieve the search planner of computational burden?
- source_sentence: SMCs conduct communication searches when facts are needed to supplement
initially reported information. Efforts are continued to contact the craft, to
find out more about a possible distress situation, and to prepare for or to avoid
a search effort. Section 3.5 has more information on communication searches.MEDICO
Communications
sentences:
- What is generally produced by dead-reckoning navigation alone for search aircraft?
- What should be the widths of rectangular areas to be covered with a PS pattern
and the lengths of rectangular areas to be covered with a CS pattern?
- What is the purpose of SMCs conducting communication searches?
- source_sentence: 'SAR facilities include designated SRUs and other resources which
can be used to conduct or support SAR operations. An SRU is a unit composed of
trained personnel and provided with equipment suitable for the expeditious and
efficient conduct of search and rescue. An SRU can be an air, maritime, or land-based
facility. Facilities selected as SRUs should be able to reach the scene of distress
quickly and, in particular, be suitable for one or more of the following operations:–
providing assistance to prevent or reduce the severity of accidents and the hardship
of survivors, e.g., escorting an aircraft, standing by a sinking vessel;– conducting
a search;– delivering supplies and survival equipment to the scene;– rescuing
survivors;– providing food, medical or other initial needs of survivors; and–
delivering the survivors to a place of safety. '
sentences:
- What are the types of SAR facilities that can be used to conduct or support SAR
operations?
- What is the scenario in which a simulated communication search is carried out
and an air search is planned?
- What is discussed in detail in various other places in this Manual?
- source_sentence: Support facilities enable the operational response resources (e.g.,
the RCC and SRUs) to provide the SAR services. Without the supporting resources,
the operational resources cannot sustain effective operations. There is a wide
range of support facilities and services, which include the following:Training
facilities Facility maintenanceCommunications facilities Management functionsNavigation
systems Research and developmentSAR data providers (SDPs) PlanningMedical facilities
ExercisesAircraft landing fields Refuelling servicesVoluntary services (e.g.,
Red Cross) Critical incident stress counsellors Computer resources
sentences:
- How many ways are there to train SAR specialists and teams?
- What types of support facilities are mentioned in the context?
- What is the duration of a prolonged blast?
- source_sentence: 'Sound funding decisions arise out of accurate assessments made
of the SAR system. To measure the performance or effectiveness of a SAR system
usually requires collecting information or statistics and establishing agreed-upon
goals. All pertinent information should be collected, including where the system
failed to perform as it should have; failures and successes provide valuable information
in assessing effectiveness and determining means to improve. '
sentences:
- What is required to measure the performance or effectiveness of a SAR system?
- What is the purpose of having an SRR?
- What is the effect of decreasing track spacing on the area that can be searched?
model-index:
- name: BGE base Financial Matryoshka
results:
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 768
type: dim_768
metrics:
- type: cosine_accuracy@1
value: 0.7631578947368421
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.9122807017543859
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.9385964912280702
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.9912280701754386
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.7631578947368421
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.30409356725146197
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.18771929824561404
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.09912280701754386
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.7631578947368421
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.9122807017543859
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.9385964912280702
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.9912280701754386
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.8800566604626379
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.8442112225006964
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.8449422166527428
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 512
type: dim_512
metrics:
- type: cosine_accuracy@1
value: 0.7456140350877193
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.9210526315789473
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.9385964912280702
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.9912280701754386
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.7456140350877193
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.30701754385964913
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.18771929824561404
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.09912280701754386
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.7456140350877193
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.9210526315789473
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.9385964912280702
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.9912280701754386
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.8757357824813555
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.8383040935672514
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.8389306599832915
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 256
type: dim_256
metrics:
- type: cosine_accuracy@1
value: 0.7280701754385965
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.8947368421052632
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.9385964912280702
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.956140350877193
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.7280701754385965
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.2982456140350877
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.18771929824561406
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.0956140350877193
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.7280701754385965
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.8947368421052632
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.9385964912280702
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.956140350877193
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.8514949465138896
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.8167397660818715
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.8197472848788638
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 128
type: dim_128
metrics:
- type: cosine_accuracy@1
value: 0.6842105263157895
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.8596491228070176
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.8947368421052632
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.9385964912280702
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.6842105263157895
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.28654970760233917
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.17894736842105263
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.09385964912280703
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.6842105263157895
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.8596491228070176
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.8947368421052632
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.9385964912280702
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.8139200097505314
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.7736702868281816
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.7777583689864392
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 64
type: dim_64
metrics:
- type: cosine_accuracy@1
value: 0.6140350877192983
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.7456140350877193
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.8245614035087719
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.8947368421052632
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.6140350877192983
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.24853801169590642
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.16491228070175437
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.08947368421052632
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.6140350877192983
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.7456140350877193
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.8245614035087719
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.8947368421052632
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.7479917679807845
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.7017961570593151
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.7073668567988093
name: Cosine Map@100
---
# BGE base Financial Matryoshka
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [BAAI/bge-large-en-v1.5](https://huggingface.co/BAAI/bge-large-en-v1.5) on the json dataset. It maps sentences & paragraphs to a 1024-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
## Model Details
### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [BAAI/bge-large-en-v1.5](https://huggingface.co/BAAI/bge-large-en-v1.5) <!-- at revision d4aa6901d3a41ba39fb536a557fa166f842b0e09 -->
- **Maximum Sequence Length:** 512 tokens
- **Output Dimensionality:** 1024 tokens
- **Similarity Function:** Cosine Similarity
- **Training Dataset:**
- json
- **Language:** en
- **License:** apache-2.0
### Model Sources
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
### Full Model Architecture
```
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': True}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
```
## Usage
### Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
```bash
pip install -U sentence-transformers
```
Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("tessimago/bge-large-repmus-matryoshka")
# Run inference
sentences = [
'Sound funding decisions arise out of accurate assessments made of the SAR system. To measure the performance or effectiveness of a SAR system usually requires collecting information or statistics and establishing agreed-upon goals. All pertinent information should be collected, including where the system failed to perform as it should have; failures and successes provide valuable information in assessing effectiveness and determining means to improve. ',
'What is required to measure the performance or effectiveness of a SAR system?',
'What is the effect of decreasing track spacing on the area that can be searched?',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 1024]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
```
<!--
### Direct Usage (Transformers)
<details><summary>Click to see the direct usage in Transformers</summary>
</details>
-->
<!--
### Downstream Usage (Sentence Transformers)
You can finetune this model on your own dataset.
<details><summary>Click to expand</summary>
</details>
-->
<!--
### Out-of-Scope Use
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->
## Evaluation
### Metrics
#### Information Retrieval
* Dataset: `dim_768`
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
| Metric | Value |
|:--------------------|:-----------|
| cosine_accuracy@1 | 0.7632 |
| cosine_accuracy@3 | 0.9123 |
| cosine_accuracy@5 | 0.9386 |
| cosine_accuracy@10 | 0.9912 |
| cosine_precision@1 | 0.7632 |
| cosine_precision@3 | 0.3041 |
| cosine_precision@5 | 0.1877 |
| cosine_precision@10 | 0.0991 |
| cosine_recall@1 | 0.7632 |
| cosine_recall@3 | 0.9123 |
| cosine_recall@5 | 0.9386 |
| cosine_recall@10 | 0.9912 |
| cosine_ndcg@10 | 0.8801 |
| cosine_mrr@10 | 0.8442 |
| **cosine_map@100** | **0.8449** |
#### Information Retrieval
* Dataset: `dim_512`
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
| Metric | Value |
|:--------------------|:-----------|
| cosine_accuracy@1 | 0.7456 |
| cosine_accuracy@3 | 0.9211 |
| cosine_accuracy@5 | 0.9386 |
| cosine_accuracy@10 | 0.9912 |
| cosine_precision@1 | 0.7456 |
| cosine_precision@3 | 0.307 |
| cosine_precision@5 | 0.1877 |
| cosine_precision@10 | 0.0991 |
| cosine_recall@1 | 0.7456 |
| cosine_recall@3 | 0.9211 |
| cosine_recall@5 | 0.9386 |
| cosine_recall@10 | 0.9912 |
| cosine_ndcg@10 | 0.8757 |
| cosine_mrr@10 | 0.8383 |
| **cosine_map@100** | **0.8389** |
#### Information Retrieval
* Dataset: `dim_256`
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
| Metric | Value |
|:--------------------|:-----------|
| cosine_accuracy@1 | 0.7281 |
| cosine_accuracy@3 | 0.8947 |
| cosine_accuracy@5 | 0.9386 |
| cosine_accuracy@10 | 0.9561 |
| cosine_precision@1 | 0.7281 |
| cosine_precision@3 | 0.2982 |
| cosine_precision@5 | 0.1877 |
| cosine_precision@10 | 0.0956 |
| cosine_recall@1 | 0.7281 |
| cosine_recall@3 | 0.8947 |
| cosine_recall@5 | 0.9386 |
| cosine_recall@10 | 0.9561 |
| cosine_ndcg@10 | 0.8515 |
| cosine_mrr@10 | 0.8167 |
| **cosine_map@100** | **0.8197** |
#### Information Retrieval
* Dataset: `dim_128`
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
| Metric | Value |
|:--------------------|:-----------|
| cosine_accuracy@1 | 0.6842 |
| cosine_accuracy@3 | 0.8596 |
| cosine_accuracy@5 | 0.8947 |
| cosine_accuracy@10 | 0.9386 |
| cosine_precision@1 | 0.6842 |
| cosine_precision@3 | 0.2865 |
| cosine_precision@5 | 0.1789 |
| cosine_precision@10 | 0.0939 |
| cosine_recall@1 | 0.6842 |
| cosine_recall@3 | 0.8596 |
| cosine_recall@5 | 0.8947 |
| cosine_recall@10 | 0.9386 |
| cosine_ndcg@10 | 0.8139 |
| cosine_mrr@10 | 0.7737 |
| **cosine_map@100** | **0.7778** |
#### Information Retrieval
* Dataset: `dim_64`
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
| Metric | Value |
|:--------------------|:-----------|
| cosine_accuracy@1 | 0.614 |
| cosine_accuracy@3 | 0.7456 |
| cosine_accuracy@5 | 0.8246 |
| cosine_accuracy@10 | 0.8947 |
| cosine_precision@1 | 0.614 |
| cosine_precision@3 | 0.2485 |
| cosine_precision@5 | 0.1649 |
| cosine_precision@10 | 0.0895 |
| cosine_recall@1 | 0.614 |
| cosine_recall@3 | 0.7456 |
| cosine_recall@5 | 0.8246 |
| cosine_recall@10 | 0.8947 |
| cosine_ndcg@10 | 0.748 |
| cosine_mrr@10 | 0.7018 |
| **cosine_map@100** | **0.7074** |
<!--
## Bias, Risks and Limitations
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->
<!--
### Recommendations
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->
## Training Details
### Training Dataset
#### json
* Dataset: json
* Size: 1,024 training samples
* Columns: <code>positive</code> and <code>anchor</code>
* Approximate statistics based on the first 1000 samples:
| | positive | anchor |
|:--------|:-------------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|
| type | string | string |
| details | <ul><li>min: 10 tokens</li><li>mean: 133.58 tokens</li><li>max: 512 tokens</li></ul> | <ul><li>min: 7 tokens</li><li>mean: 17.7 tokens</li><li>max: 39 tokens</li></ul> |
* Samples:
| positive | anchor |
|:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:---------------------------------------------------------------------------------------------------------------------------------------|
| <code>The debriefing helps to ensure that all survivors are rescued, to attend to the physical welfare of each survivor, and to obtain information which may assist and improve SAR services. Proper debriefing techniques include:– due care to avoid worsening a survivor’s condition by excessive debriefing;– careful assessment of the survivor’s statements if the survivor is frightened or excited;– use of a calm voice in questioning;– avoidance of suggesting the answers when obtaining facts; and– explaining that the information requested is important for the success of the SAR operation, and possibly for future SAR operations.</code> | <code>What are some proper debriefing techniques used in SAR services?</code> |
| <code>Communicating with passengers is more difficult in remote areas where phone service may be inadequate or lacking. If phones do exist, calling the airline or shipping company may be the best way to check in and find out information. In more populated areas, local agencies may have an emergency evacuation plan or other useful plan that can be implemented.IE961E.indb 21 6/28/2013 10:29:55 AM</code> | <code>What is a good way to check in and find out information in remote areas where phone service may be inadequate or lacking?</code> |
| <code>Voice communication is the basis of telemedical advice. It allows free dialogue and contributes to the human relationship, which is crucial to any medical consultation. Text messages are a useful complement to the voice telemedical advice and add the reliability of writing. Facsimile allows the exchange of pictures or diagrams, which help to identify a symptom, describe a lesion or the method of treatment. Digital data transmissions (photographs or electrocardiogram) provide an objective and potentially crucial addition to descriptive and subjective clinical data.</code> | <code>What are the types of communication methods used in telemedical advice?</code> |
* Loss: [<code>MatryoshkaLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters:
```json
{
"loss": "MultipleNegativesRankingLoss",
"matryoshka_dims": [
768,
512,
256,
128,
64
],
"matryoshka_weights": [
1,
1,
1,
1,
1
],
"n_dims_per_step": -1
}
```
### Training Hyperparameters
#### Non-Default Hyperparameters
- `eval_strategy`: epoch
- `per_device_train_batch_size`: 32
- `per_device_eval_batch_size`: 16
- `gradient_accumulation_steps`: 16
- `learning_rate`: 2e-05
- `num_train_epochs`: 4
- `lr_scheduler_type`: cosine
- `warmup_ratio`: 0.1
- `bf16`: True
- `tf32`: True
- `load_best_model_at_end`: True
- `optim`: adamw_torch_fused
- `batch_sampler`: no_duplicates
#### All Hyperparameters
<details><summary>Click to expand</summary>
- `overwrite_output_dir`: False
- `do_predict`: False
- `eval_strategy`: epoch
- `prediction_loss_only`: True
- `per_device_train_batch_size`: 32
- `per_device_eval_batch_size`: 16
- `per_gpu_train_batch_size`: None
- `per_gpu_eval_batch_size`: None
- `gradient_accumulation_steps`: 16
- `eval_accumulation_steps`: None
- `learning_rate`: 2e-05
- `weight_decay`: 0.0
- `adam_beta1`: 0.9
- `adam_beta2`: 0.999
- `adam_epsilon`: 1e-08
- `max_grad_norm`: 1.0
- `num_train_epochs`: 4
- `max_steps`: -1
- `lr_scheduler_type`: cosine
- `lr_scheduler_kwargs`: {}
- `warmup_ratio`: 0.1
- `warmup_steps`: 0
- `log_level`: passive
- `log_level_replica`: warning
- `log_on_each_node`: True
- `logging_nan_inf_filter`: True
- `save_safetensors`: True
- `save_on_each_node`: False
- `save_only_model`: False
- `restore_callback_states_from_checkpoint`: False
- `no_cuda`: False
- `use_cpu`: False
- `use_mps_device`: False
- `seed`: 42
- `data_seed`: None
- `jit_mode_eval`: False
- `use_ipex`: False
- `bf16`: True
- `fp16`: False
- `fp16_opt_level`: O1
- `half_precision_backend`: auto
- `bf16_full_eval`: False
- `fp16_full_eval`: False
- `tf32`: True
- `local_rank`: 0
- `ddp_backend`: None
- `tpu_num_cores`: None
- `tpu_metrics_debug`: False
- `debug`: []
- `dataloader_drop_last`: False
- `dataloader_num_workers`: 0
- `dataloader_prefetch_factor`: None
- `past_index`: -1
- `disable_tqdm`: False
- `remove_unused_columns`: True
- `label_names`: None
- `load_best_model_at_end`: True
- `ignore_data_skip`: False
- `fsdp`: []
- `fsdp_min_num_params`: 0
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
- `fsdp_transformer_layer_cls_to_wrap`: None
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
- `deepspeed`: None
- `label_smoothing_factor`: 0.0
- `optim`: adamw_torch_fused
- `optim_args`: None
- `adafactor`: False
- `group_by_length`: False
- `length_column_name`: length
- `ddp_find_unused_parameters`: None
- `ddp_bucket_cap_mb`: None
- `ddp_broadcast_buffers`: False
- `dataloader_pin_memory`: True
- `dataloader_persistent_workers`: False
- `skip_memory_metrics`: True
- `use_legacy_prediction_loop`: False
- `push_to_hub`: False
- `resume_from_checkpoint`: None
- `hub_model_id`: None
- `hub_strategy`: every_save
- `hub_private_repo`: False
- `hub_always_push`: False
- `gradient_checkpointing`: False
- `gradient_checkpointing_kwargs`: None
- `include_inputs_for_metrics`: False
- `eval_do_concat_batches`: True
- `fp16_backend`: auto
- `push_to_hub_model_id`: None
- `push_to_hub_organization`: None
- `mp_parameters`:
- `auto_find_batch_size`: False
- `full_determinism`: False
- `torchdynamo`: None
- `ray_scope`: last
- `ddp_timeout`: 1800
- `torch_compile`: False
- `torch_compile_backend`: None
- `torch_compile_mode`: None
- `dispatch_batches`: None
- `split_batches`: None
- `include_tokens_per_second`: False
- `include_num_input_tokens_seen`: False
- `neftune_noise_alpha`: None
- `optim_target_modules`: None
- `batch_eval_metrics`: False
- `batch_sampler`: no_duplicates
- `multi_dataset_batch_sampler`: proportional
</details>
### Training Logs
| Epoch | Step | dim_128_cosine_map@100 | dim_256_cosine_map@100 | dim_512_cosine_map@100 | dim_64_cosine_map@100 | dim_768_cosine_map@100 |
|:-------:|:-----:|:----------------------:|:----------------------:|:----------------------:|:---------------------:|:----------------------:|
| 1.0 | 2 | 0.7826 | 0.8163 | 0.8230 | 0.6761 | 0.8359 |
| 2.0 | 4 | 0.7739 | 0.8218 | 0.8282 | 0.6939 | 0.8459 |
| 3.0 | 6 | 0.7740 | 0.8223 | 0.8409 | 0.7072 | 0.8457 |
| **4.0** | **8** | **0.7778** | **0.8197** | **0.8389** | **0.7074** | **0.8449** |
* The bold row denotes the saved checkpoint.
### Framework Versions
- Python: 3.10.14
- Sentence Transformers: 3.1.0
- Transformers: 4.41.2
- PyTorch: 2.1.2+cu121
- Accelerate: 0.34.2
- Datasets: 2.19.1
- Tokenizers: 0.19.1
## Citation
### BibTeX
#### Sentence Transformers
```bibtex
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
```
#### MatryoshkaLoss
```bibtex
@misc{kusupati2024matryoshka,
title={Matryoshka Representation Learning},
author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
year={2024},
eprint={2205.13147},
archivePrefix={arXiv},
primaryClass={cs.LG}
}
```
#### MultipleNegativesRankingLoss
```bibtex
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
```
<!--
## Glossary
*Clearly define terms in order to be accessible across audiences.*
-->
<!--
## Model Card Authors
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->
<!--
## Model Card Contact
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
--> |