File size: 32,150 Bytes
fe225eb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
---
base_model: BAAI/bge-large-en-v1.5
language:
- en
library_name: sentence-transformers
license: apache-2.0
metrics:
- cosine_accuracy@1
- cosine_accuracy@3
- cosine_accuracy@5
- cosine_accuracy@10
- cosine_precision@1
- cosine_precision@3
- cosine_precision@5
- cosine_precision@10
- cosine_recall@1
- cosine_recall@3
- cosine_recall@5
- cosine_recall@10
- cosine_ndcg@10
- cosine_mrr@10
- cosine_map@100
pipeline_tag: sentence-similarity
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:1024
- loss:MatryoshkaLoss
- loss:MultipleNegativesRankingLoss
widget:
- source_sentence: After rescue, survivors may require hospital treatment. This must
    be provided as quickly as possible. The SMC should consider having ambulance and
    hospital facilities ready.
  sentences:
  - What should the SMC consider having ready after a rescue?
  - What is critical for mass rescue operations?
  - What can computer programs do to relieve the search planner of computational burden?
- source_sentence: SMCs conduct communication searches when facts are needed to supplement
    initially reported information. Efforts are continued to contact the craft, to
    find out more about a possible distress situation, and to prepare for or to avoid
    a search effort. Section 3.5 has more information on communication searches.MEDICO
    Communications
  sentences:
  - What is generally produced by dead-reckoning navigation alone for search aircraft?
  - What should be the widths of rectangular areas to be covered with a PS pattern
    and the lengths of rectangular areas to be covered with a CS pattern?
  - What is the purpose of SMCs conducting communication searches?
- source_sentence: 'SAR facilities include designated SRUs and other resources which
    can be used to conduct or support SAR operations. An SRU is a unit composed of
    trained personnel and provided with equipment suitable for the expeditious and
    efficient conduct of search and rescue. An SRU can be an air, maritime, or land-based
    facility. Facilities selected as SRUs should be able to reach the scene of distress
    quickly and, in particular, be suitable for one or more of the following operations:–
    providing assistance to prevent or reduce the severity of accidents and the hardship
    of survivors, e.g., escorting an aircraft, standing by a sinking vessel;– conducting
    a search;– delivering supplies and survival equipment to the scene;– rescuing
    survivors;– providing food, medical or other initial needs of survivors; and–
    delivering the survivors to a place of safety. '
  sentences:
  - What are the types of SAR facilities that can be used to conduct or support SAR
    operations?
  - What is the scenario in which a simulated communication search is carried out
    and an air search is planned?
  - What is discussed in detail in various other places in this Manual?
- source_sentence: Support facilities enable the operational response resources (e.g.,
    the RCC and SRUs) to provide the SAR services. Without the supporting resources,
    the operational resources cannot sustain effective operations. There is a wide
    range of support facilities and services, which include the following:Training
    facilities Facility maintenanceCommunications facilities Management functionsNavigation
    systems Research and developmentSAR data providers (SDPs) PlanningMedical facilities
    ExercisesAircraft landing fields Refuelling servicesVoluntary services (e.g.,
    Red Cross) Critical incident stress counsellors Computer resources
  sentences:
  - How many ways are there to train SAR specialists and teams?
  - What types of support facilities are mentioned in the context?
  - What is the duration of a prolonged blast?
- source_sentence: 'Sound funding decisions arise out of accurate assessments made
    of the SAR system. To measure the performance or effectiveness of a SAR system
    usually requires collecting information or statistics and establishing agreed-upon
    goals. All pertinent information should be collected, including where the system
    failed to perform as it should have; failures and successes provide valuable information
    in assessing effectiveness and determining means to improve. '
  sentences:
  - What is required to measure the performance or effectiveness of a SAR system?
  - What is the purpose of having an SRR?
  - What is the effect of decreasing track spacing on the area that can be searched?
model-index:
- name: BGE base Financial Matryoshka
  results:
  - task:
      type: information-retrieval
      name: Information Retrieval
    dataset:
      name: dim 768
      type: dim_768
    metrics:
    - type: cosine_accuracy@1
      value: 0.7631578947368421
      name: Cosine Accuracy@1
    - type: cosine_accuracy@3
      value: 0.9122807017543859
      name: Cosine Accuracy@3
    - type: cosine_accuracy@5
      value: 0.9385964912280702
      name: Cosine Accuracy@5
    - type: cosine_accuracy@10
      value: 0.9912280701754386
      name: Cosine Accuracy@10
    - type: cosine_precision@1
      value: 0.7631578947368421
      name: Cosine Precision@1
    - type: cosine_precision@3
      value: 0.30409356725146197
      name: Cosine Precision@3
    - type: cosine_precision@5
      value: 0.18771929824561404
      name: Cosine Precision@5
    - type: cosine_precision@10
      value: 0.09912280701754386
      name: Cosine Precision@10
    - type: cosine_recall@1
      value: 0.7631578947368421
      name: Cosine Recall@1
    - type: cosine_recall@3
      value: 0.9122807017543859
      name: Cosine Recall@3
    - type: cosine_recall@5
      value: 0.9385964912280702
      name: Cosine Recall@5
    - type: cosine_recall@10
      value: 0.9912280701754386
      name: Cosine Recall@10
    - type: cosine_ndcg@10
      value: 0.8800566604626379
      name: Cosine Ndcg@10
    - type: cosine_mrr@10
      value: 0.8442112225006964
      name: Cosine Mrr@10
    - type: cosine_map@100
      value: 0.8449422166527428
      name: Cosine Map@100
  - task:
      type: information-retrieval
      name: Information Retrieval
    dataset:
      name: dim 512
      type: dim_512
    metrics:
    - type: cosine_accuracy@1
      value: 0.7456140350877193
      name: Cosine Accuracy@1
    - type: cosine_accuracy@3
      value: 0.9210526315789473
      name: Cosine Accuracy@3
    - type: cosine_accuracy@5
      value: 0.9385964912280702
      name: Cosine Accuracy@5
    - type: cosine_accuracy@10
      value: 0.9912280701754386
      name: Cosine Accuracy@10
    - type: cosine_precision@1
      value: 0.7456140350877193
      name: Cosine Precision@1
    - type: cosine_precision@3
      value: 0.30701754385964913
      name: Cosine Precision@3
    - type: cosine_precision@5
      value: 0.18771929824561404
      name: Cosine Precision@5
    - type: cosine_precision@10
      value: 0.09912280701754386
      name: Cosine Precision@10
    - type: cosine_recall@1
      value: 0.7456140350877193
      name: Cosine Recall@1
    - type: cosine_recall@3
      value: 0.9210526315789473
      name: Cosine Recall@3
    - type: cosine_recall@5
      value: 0.9385964912280702
      name: Cosine Recall@5
    - type: cosine_recall@10
      value: 0.9912280701754386
      name: Cosine Recall@10
    - type: cosine_ndcg@10
      value: 0.8757357824813555
      name: Cosine Ndcg@10
    - type: cosine_mrr@10
      value: 0.8383040935672514
      name: Cosine Mrr@10
    - type: cosine_map@100
      value: 0.8389306599832915
      name: Cosine Map@100
  - task:
      type: information-retrieval
      name: Information Retrieval
    dataset:
      name: dim 256
      type: dim_256
    metrics:
    - type: cosine_accuracy@1
      value: 0.7280701754385965
      name: Cosine Accuracy@1
    - type: cosine_accuracy@3
      value: 0.8947368421052632
      name: Cosine Accuracy@3
    - type: cosine_accuracy@5
      value: 0.9385964912280702
      name: Cosine Accuracy@5
    - type: cosine_accuracy@10
      value: 0.956140350877193
      name: Cosine Accuracy@10
    - type: cosine_precision@1
      value: 0.7280701754385965
      name: Cosine Precision@1
    - type: cosine_precision@3
      value: 0.2982456140350877
      name: Cosine Precision@3
    - type: cosine_precision@5
      value: 0.18771929824561406
      name: Cosine Precision@5
    - type: cosine_precision@10
      value: 0.0956140350877193
      name: Cosine Precision@10
    - type: cosine_recall@1
      value: 0.7280701754385965
      name: Cosine Recall@1
    - type: cosine_recall@3
      value: 0.8947368421052632
      name: Cosine Recall@3
    - type: cosine_recall@5
      value: 0.9385964912280702
      name: Cosine Recall@5
    - type: cosine_recall@10
      value: 0.956140350877193
      name: Cosine Recall@10
    - type: cosine_ndcg@10
      value: 0.8514949465138896
      name: Cosine Ndcg@10
    - type: cosine_mrr@10
      value: 0.8167397660818715
      name: Cosine Mrr@10
    - type: cosine_map@100
      value: 0.8197472848788638
      name: Cosine Map@100
  - task:
      type: information-retrieval
      name: Information Retrieval
    dataset:
      name: dim 128
      type: dim_128
    metrics:
    - type: cosine_accuracy@1
      value: 0.6842105263157895
      name: Cosine Accuracy@1
    - type: cosine_accuracy@3
      value: 0.8596491228070176
      name: Cosine Accuracy@3
    - type: cosine_accuracy@5
      value: 0.8947368421052632
      name: Cosine Accuracy@5
    - type: cosine_accuracy@10
      value: 0.9385964912280702
      name: Cosine Accuracy@10
    - type: cosine_precision@1
      value: 0.6842105263157895
      name: Cosine Precision@1
    - type: cosine_precision@3
      value: 0.28654970760233917
      name: Cosine Precision@3
    - type: cosine_precision@5
      value: 0.17894736842105263
      name: Cosine Precision@5
    - type: cosine_precision@10
      value: 0.09385964912280703
      name: Cosine Precision@10
    - type: cosine_recall@1
      value: 0.6842105263157895
      name: Cosine Recall@1
    - type: cosine_recall@3
      value: 0.8596491228070176
      name: Cosine Recall@3
    - type: cosine_recall@5
      value: 0.8947368421052632
      name: Cosine Recall@5
    - type: cosine_recall@10
      value: 0.9385964912280702
      name: Cosine Recall@10
    - type: cosine_ndcg@10
      value: 0.8139200097505314
      name: Cosine Ndcg@10
    - type: cosine_mrr@10
      value: 0.7736702868281816
      name: Cosine Mrr@10
    - type: cosine_map@100
      value: 0.7777583689864392
      name: Cosine Map@100
  - task:
      type: information-retrieval
      name: Information Retrieval
    dataset:
      name: dim 64
      type: dim_64
    metrics:
    - type: cosine_accuracy@1
      value: 0.6140350877192983
      name: Cosine Accuracy@1
    - type: cosine_accuracy@3
      value: 0.7456140350877193
      name: Cosine Accuracy@3
    - type: cosine_accuracy@5
      value: 0.8245614035087719
      name: Cosine Accuracy@5
    - type: cosine_accuracy@10
      value: 0.8947368421052632
      name: Cosine Accuracy@10
    - type: cosine_precision@1
      value: 0.6140350877192983
      name: Cosine Precision@1
    - type: cosine_precision@3
      value: 0.24853801169590642
      name: Cosine Precision@3
    - type: cosine_precision@5
      value: 0.16491228070175437
      name: Cosine Precision@5
    - type: cosine_precision@10
      value: 0.08947368421052632
      name: Cosine Precision@10
    - type: cosine_recall@1
      value: 0.6140350877192983
      name: Cosine Recall@1
    - type: cosine_recall@3
      value: 0.7456140350877193
      name: Cosine Recall@3
    - type: cosine_recall@5
      value: 0.8245614035087719
      name: Cosine Recall@5
    - type: cosine_recall@10
      value: 0.8947368421052632
      name: Cosine Recall@10
    - type: cosine_ndcg@10
      value: 0.7479917679807845
      name: Cosine Ndcg@10
    - type: cosine_mrr@10
      value: 0.7017961570593151
      name: Cosine Mrr@10
    - type: cosine_map@100
      value: 0.7073668567988093
      name: Cosine Map@100
---

# BGE base Financial Matryoshka

This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [BAAI/bge-large-en-v1.5](https://huggingface.co/BAAI/bge-large-en-v1.5) on the json dataset. It maps sentences & paragraphs to a 1024-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

## Model Details

### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [BAAI/bge-large-en-v1.5](https://huggingface.co/BAAI/bge-large-en-v1.5) <!-- at revision d4aa6901d3a41ba39fb536a557fa166f842b0e09 -->
- **Maximum Sequence Length:** 512 tokens
- **Output Dimensionality:** 1024 tokens
- **Similarity Function:** Cosine Similarity
- **Training Dataset:**
    - json
- **Language:** en
- **License:** apache-2.0

### Model Sources

- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)

### Full Model Architecture

```
SentenceTransformer(
  (0): Transformer({'max_seq_length': 512, 'do_lower_case': True}) with Transformer model: BertModel 
  (1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
  (2): Normalize()
)
```

## Usage

### Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

```bash
pip install -U sentence-transformers
```

Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("tessimago/bge-large-repmus-matryoshka")
# Run inference
sentences = [
    'Sound funding decisions arise out of accurate assessments made of the SAR system. To measure the performance or effectiveness of a SAR system usually requires collecting information or statistics and establishing agreed-upon goals. All pertinent information should be collected, including where the system failed to perform as it should have; failures and successes provide valuable information in assessing effectiveness and determining means to improve. ',
    'What is required to measure the performance or effectiveness of a SAR system?',
    'What is the effect of decreasing track spacing on the area that can be searched?',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 1024]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
```

<!--
### Direct Usage (Transformers)

<details><summary>Click to see the direct usage in Transformers</summary>

</details>
-->

<!--
### Downstream Usage (Sentence Transformers)

You can finetune this model on your own dataset.

<details><summary>Click to expand</summary>

</details>
-->

<!--
### Out-of-Scope Use

*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->

## Evaluation

### Metrics

#### Information Retrieval
* Dataset: `dim_768`
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)

| Metric              | Value      |
|:--------------------|:-----------|
| cosine_accuracy@1   | 0.7632     |
| cosine_accuracy@3   | 0.9123     |
| cosine_accuracy@5   | 0.9386     |
| cosine_accuracy@10  | 0.9912     |
| cosine_precision@1  | 0.7632     |
| cosine_precision@3  | 0.3041     |
| cosine_precision@5  | 0.1877     |
| cosine_precision@10 | 0.0991     |
| cosine_recall@1     | 0.7632     |
| cosine_recall@3     | 0.9123     |
| cosine_recall@5     | 0.9386     |
| cosine_recall@10    | 0.9912     |
| cosine_ndcg@10      | 0.8801     |
| cosine_mrr@10       | 0.8442     |
| **cosine_map@100**  | **0.8449** |

#### Information Retrieval
* Dataset: `dim_512`
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)

| Metric              | Value      |
|:--------------------|:-----------|
| cosine_accuracy@1   | 0.7456     |
| cosine_accuracy@3   | 0.9211     |
| cosine_accuracy@5   | 0.9386     |
| cosine_accuracy@10  | 0.9912     |
| cosine_precision@1  | 0.7456     |
| cosine_precision@3  | 0.307      |
| cosine_precision@5  | 0.1877     |
| cosine_precision@10 | 0.0991     |
| cosine_recall@1     | 0.7456     |
| cosine_recall@3     | 0.9211     |
| cosine_recall@5     | 0.9386     |
| cosine_recall@10    | 0.9912     |
| cosine_ndcg@10      | 0.8757     |
| cosine_mrr@10       | 0.8383     |
| **cosine_map@100**  | **0.8389** |

#### Information Retrieval
* Dataset: `dim_256`
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)

| Metric              | Value      |
|:--------------------|:-----------|
| cosine_accuracy@1   | 0.7281     |
| cosine_accuracy@3   | 0.8947     |
| cosine_accuracy@5   | 0.9386     |
| cosine_accuracy@10  | 0.9561     |
| cosine_precision@1  | 0.7281     |
| cosine_precision@3  | 0.2982     |
| cosine_precision@5  | 0.1877     |
| cosine_precision@10 | 0.0956     |
| cosine_recall@1     | 0.7281     |
| cosine_recall@3     | 0.8947     |
| cosine_recall@5     | 0.9386     |
| cosine_recall@10    | 0.9561     |
| cosine_ndcg@10      | 0.8515     |
| cosine_mrr@10       | 0.8167     |
| **cosine_map@100**  | **0.8197** |

#### Information Retrieval
* Dataset: `dim_128`
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)

| Metric              | Value      |
|:--------------------|:-----------|
| cosine_accuracy@1   | 0.6842     |
| cosine_accuracy@3   | 0.8596     |
| cosine_accuracy@5   | 0.8947     |
| cosine_accuracy@10  | 0.9386     |
| cosine_precision@1  | 0.6842     |
| cosine_precision@3  | 0.2865     |
| cosine_precision@5  | 0.1789     |
| cosine_precision@10 | 0.0939     |
| cosine_recall@1     | 0.6842     |
| cosine_recall@3     | 0.8596     |
| cosine_recall@5     | 0.8947     |
| cosine_recall@10    | 0.9386     |
| cosine_ndcg@10      | 0.8139     |
| cosine_mrr@10       | 0.7737     |
| **cosine_map@100**  | **0.7778** |

#### Information Retrieval
* Dataset: `dim_64`
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)

| Metric              | Value      |
|:--------------------|:-----------|
| cosine_accuracy@1   | 0.614      |
| cosine_accuracy@3   | 0.7456     |
| cosine_accuracy@5   | 0.8246     |
| cosine_accuracy@10  | 0.8947     |
| cosine_precision@1  | 0.614      |
| cosine_precision@3  | 0.2485     |
| cosine_precision@5  | 0.1649     |
| cosine_precision@10 | 0.0895     |
| cosine_recall@1     | 0.614      |
| cosine_recall@3     | 0.7456     |
| cosine_recall@5     | 0.8246     |
| cosine_recall@10    | 0.8947     |
| cosine_ndcg@10      | 0.748      |
| cosine_mrr@10       | 0.7018     |
| **cosine_map@100**  | **0.7074** |

<!--
## Bias, Risks and Limitations

*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->

<!--
### Recommendations

*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->

## Training Details

### Training Dataset

#### json

* Dataset: json
* Size: 1,024 training samples
* Columns: <code>positive</code> and <code>anchor</code>
* Approximate statistics based on the first 1000 samples:
  |         | positive                                                                             | anchor                                                                           |
  |:--------|:-------------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|
  | type    | string                                                                               | string                                                                           |
  | details | <ul><li>min: 10 tokens</li><li>mean: 133.58 tokens</li><li>max: 512 tokens</li></ul> | <ul><li>min: 7 tokens</li><li>mean: 17.7 tokens</li><li>max: 39 tokens</li></ul> |
* Samples:
  | positive                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | anchor                                                                                                                                 |
  |:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:---------------------------------------------------------------------------------------------------------------------------------------|
  | <code>The debriefing helps to ensure that all survivors are rescued, to attend to the physical welfare of each survivor, and to obtain information which may assist and improve SAR services. Proper debriefing techniques include:– due care to avoid worsening a survivor’s condition by excessive debriefing;– careful assessment of the survivor’s statements if the survivor is frightened or excited;– use of a calm voice in questioning;– avoidance of suggesting the answers when obtaining facts; and– explaining that the information requested is important for the success of the SAR operation, and possibly for future SAR operations.</code> | <code>What are some proper debriefing techniques used in SAR services?</code>                                                          |
  | <code>Communicating with passengers is more difficult in remote areas where phone service may be inadequate or lacking. If phones do exist, calling the airline or shipping company may be the best way to check in and find out information. In more populated areas, local agencies may have an emergency evacuation plan or other useful plan that can be implemented.IE961E.indb 21 6/28/2013 10:29:55 AM</code>                                                                                                                                                                                                                                         | <code>What is a good way to check in and find out information in remote areas where phone service may be inadequate or lacking?</code> |
  | <code>Voice communication is the basis of telemedical advice. It allows free dialogue and contributes to the human relationship, which is crucial to any medical consultation. Text messages are a useful complement to the voice telemedical advice and add the reliability of writing. Facsimile allows the exchange of pictures or diagrams, which help to identify a symptom, describe a lesion or the method of treatment. Digital data transmissions (photographs or electrocardiogram) provide an objective and potentially crucial addition to descriptive and subjective clinical data.</code>                                                      | <code>What are the types of communication methods used in telemedical advice?</code>                                                   |
* Loss: [<code>MatryoshkaLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters:
  ```json
  {
      "loss": "MultipleNegativesRankingLoss",
      "matryoshka_dims": [
          768,
          512,
          256,
          128,
          64
      ],
      "matryoshka_weights": [
          1,
          1,
          1,
          1,
          1
      ],
      "n_dims_per_step": -1
  }
  ```

### Training Hyperparameters
#### Non-Default Hyperparameters

- `eval_strategy`: epoch
- `per_device_train_batch_size`: 32
- `per_device_eval_batch_size`: 16
- `gradient_accumulation_steps`: 16
- `learning_rate`: 2e-05
- `num_train_epochs`: 4
- `lr_scheduler_type`: cosine
- `warmup_ratio`: 0.1
- `bf16`: True
- `tf32`: True
- `load_best_model_at_end`: True
- `optim`: adamw_torch_fused
- `batch_sampler`: no_duplicates

#### All Hyperparameters
<details><summary>Click to expand</summary>

- `overwrite_output_dir`: False
- `do_predict`: False
- `eval_strategy`: epoch
- `prediction_loss_only`: True
- `per_device_train_batch_size`: 32
- `per_device_eval_batch_size`: 16
- `per_gpu_train_batch_size`: None
- `per_gpu_eval_batch_size`: None
- `gradient_accumulation_steps`: 16
- `eval_accumulation_steps`: None
- `learning_rate`: 2e-05
- `weight_decay`: 0.0
- `adam_beta1`: 0.9
- `adam_beta2`: 0.999
- `adam_epsilon`: 1e-08
- `max_grad_norm`: 1.0
- `num_train_epochs`: 4
- `max_steps`: -1
- `lr_scheduler_type`: cosine
- `lr_scheduler_kwargs`: {}
- `warmup_ratio`: 0.1
- `warmup_steps`: 0
- `log_level`: passive
- `log_level_replica`: warning
- `log_on_each_node`: True
- `logging_nan_inf_filter`: True
- `save_safetensors`: True
- `save_on_each_node`: False
- `save_only_model`: False
- `restore_callback_states_from_checkpoint`: False
- `no_cuda`: False
- `use_cpu`: False
- `use_mps_device`: False
- `seed`: 42
- `data_seed`: None
- `jit_mode_eval`: False
- `use_ipex`: False
- `bf16`: True
- `fp16`: False
- `fp16_opt_level`: O1
- `half_precision_backend`: auto
- `bf16_full_eval`: False
- `fp16_full_eval`: False
- `tf32`: True
- `local_rank`: 0
- `ddp_backend`: None
- `tpu_num_cores`: None
- `tpu_metrics_debug`: False
- `debug`: []
- `dataloader_drop_last`: False
- `dataloader_num_workers`: 0
- `dataloader_prefetch_factor`: None
- `past_index`: -1
- `disable_tqdm`: False
- `remove_unused_columns`: True
- `label_names`: None
- `load_best_model_at_end`: True
- `ignore_data_skip`: False
- `fsdp`: []
- `fsdp_min_num_params`: 0
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
- `fsdp_transformer_layer_cls_to_wrap`: None
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
- `deepspeed`: None
- `label_smoothing_factor`: 0.0
- `optim`: adamw_torch_fused
- `optim_args`: None
- `adafactor`: False
- `group_by_length`: False
- `length_column_name`: length
- `ddp_find_unused_parameters`: None
- `ddp_bucket_cap_mb`: None
- `ddp_broadcast_buffers`: False
- `dataloader_pin_memory`: True
- `dataloader_persistent_workers`: False
- `skip_memory_metrics`: True
- `use_legacy_prediction_loop`: False
- `push_to_hub`: False
- `resume_from_checkpoint`: None
- `hub_model_id`: None
- `hub_strategy`: every_save
- `hub_private_repo`: False
- `hub_always_push`: False
- `gradient_checkpointing`: False
- `gradient_checkpointing_kwargs`: None
- `include_inputs_for_metrics`: False
- `eval_do_concat_batches`: True
- `fp16_backend`: auto
- `push_to_hub_model_id`: None
- `push_to_hub_organization`: None
- `mp_parameters`: 
- `auto_find_batch_size`: False
- `full_determinism`: False
- `torchdynamo`: None
- `ray_scope`: last
- `ddp_timeout`: 1800
- `torch_compile`: False
- `torch_compile_backend`: None
- `torch_compile_mode`: None
- `dispatch_batches`: None
- `split_batches`: None
- `include_tokens_per_second`: False
- `include_num_input_tokens_seen`: False
- `neftune_noise_alpha`: None
- `optim_target_modules`: None
- `batch_eval_metrics`: False
- `batch_sampler`: no_duplicates
- `multi_dataset_batch_sampler`: proportional

</details>

### Training Logs
| Epoch   | Step  | dim_128_cosine_map@100 | dim_256_cosine_map@100 | dim_512_cosine_map@100 | dim_64_cosine_map@100 | dim_768_cosine_map@100 |
|:-------:|:-----:|:----------------------:|:----------------------:|:----------------------:|:---------------------:|:----------------------:|
| 1.0     | 2     | 0.7826                 | 0.8163                 | 0.8230                 | 0.6761                | 0.8359                 |
| 2.0     | 4     | 0.7739                 | 0.8218                 | 0.8282                 | 0.6939                | 0.8459                 |
| 3.0     | 6     | 0.7740                 | 0.8223                 | 0.8409                 | 0.7072                | 0.8457                 |
| **4.0** | **8** | **0.7778**             | **0.8197**             | **0.8389**             | **0.7074**            | **0.8449**             |

* The bold row denotes the saved checkpoint.

### Framework Versions
- Python: 3.10.14
- Sentence Transformers: 3.1.0
- Transformers: 4.41.2
- PyTorch: 2.1.2+cu121
- Accelerate: 0.34.2
- Datasets: 2.19.1
- Tokenizers: 0.19.1

## Citation

### BibTeX

#### Sentence Transformers
```bibtex
@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}
```

#### MatryoshkaLoss
```bibtex
@misc{kusupati2024matryoshka,
    title={Matryoshka Representation Learning},
    author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
    year={2024},
    eprint={2205.13147},
    archivePrefix={arXiv},
    primaryClass={cs.LG}
}
```

#### MultipleNegativesRankingLoss
```bibtex
@misc{henderson2017efficient,
    title={Efficient Natural Language Response Suggestion for Smart Reply},
    author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
    year={2017},
    eprint={1705.00652},
    archivePrefix={arXiv},
    primaryClass={cs.CL}
}
```

<!--
## Glossary

*Clearly define terms in order to be accessible across audiences.*
-->

<!--
## Model Card Authors

*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->

<!--
## Model Card Contact

*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
-->