|
--- |
|
license: apache-2.0 |
|
base_model: distilbert-base-uncased |
|
tags: |
|
- generated_from_trainer |
|
datasets: |
|
- szeged_ner |
|
metrics: |
|
- precision |
|
- recall |
|
- f1 |
|
- accuracy |
|
model-index: |
|
- name: test-train-model |
|
results: |
|
- task: |
|
name: Token Classification |
|
type: token-classification |
|
dataset: |
|
name: szeged_ner |
|
type: szeged_ner |
|
config: business |
|
split: validation |
|
args: business |
|
metrics: |
|
- name: Precision |
|
type: precision |
|
value: 0.9325044404973357 |
|
- name: Recall |
|
type: recall |
|
value: 0.9308510638297872 |
|
- name: F1 |
|
type: f1 |
|
value: 0.9316770186335402 |
|
- name: Accuracy |
|
type: accuracy |
|
value: 0.9925327242378986 |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# test-train-model |
|
|
|
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the szeged_ner dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.0319 |
|
- Precision: 0.9325 |
|
- Recall: 0.9309 |
|
- F1: 0.9317 |
|
- Accuracy: 0.9925 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 2e-05 |
|
- train_batch_size: 16 |
|
- eval_batch_size: 16 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 5 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |
|
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| |
|
| 0.2029 | 1.0 | 511 | 0.0493 | 0.8734 | 0.8564 | 0.8648 | 0.9873 | |
|
| 0.0756 | 2.0 | 1022 | 0.0381 | 0.8930 | 0.9025 | 0.8977 | 0.9897 | |
|
| 0.0489 | 3.0 | 1533 | 0.0327 | 0.925 | 0.9184 | 0.9217 | 0.9921 | |
|
| 0.0339 | 4.0 | 2044 | 0.0323 | 0.9385 | 0.9202 | 0.9293 | 0.9926 | |
|
| 0.0258 | 5.0 | 2555 | 0.0319 | 0.9325 | 0.9309 | 0.9317 | 0.9925 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.32.0 |
|
- Pytorch 2.0.1+cu118 |
|
- Datasets 2.14.4 |
|
- Tokenizers 0.13.3 |
|
|