metadata
license: apache-2.0
base_model: distilbert-base-uncased
tags:
- generated_from_trainer
datasets:
- szeged_ner
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: test-train-model
results:
- task:
name: Token Classification
type: token-classification
dataset:
name: szeged_ner
type: szeged_ner
config: business
split: validation
args: business
metrics:
- name: Precision
type: precision
value: 0.9325044404973357
- name: Recall
type: recall
value: 0.9308510638297872
- name: F1
type: f1
value: 0.9316770186335402
- name: Accuracy
type: accuracy
value: 0.9925327242378986
test-train-model
This model is a fine-tuned version of distilbert-base-uncased on the szeged_ner dataset. It achieves the following results on the evaluation set:
- Loss: 0.0319
- Precision: 0.9325
- Recall: 0.9309
- F1: 0.9317
- Accuracy: 0.9925
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
Training results
Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
---|---|---|---|---|---|---|---|
0.2029 | 1.0 | 511 | 0.0493 | 0.8734 | 0.8564 | 0.8648 | 0.9873 |
0.0756 | 2.0 | 1022 | 0.0381 | 0.8930 | 0.9025 | 0.8977 | 0.9897 |
0.0489 | 3.0 | 1533 | 0.0327 | 0.925 | 0.9184 | 0.9217 | 0.9921 |
0.0339 | 4.0 | 2044 | 0.0323 | 0.9385 | 0.9202 | 0.9293 | 0.9926 |
0.0258 | 5.0 | 2555 | 0.0319 | 0.9325 | 0.9309 | 0.9317 | 0.9925 |
Framework versions
- Transformers 4.32.0
- Pytorch 2.0.1+cu118
- Datasets 2.14.4
- Tokenizers 0.13.3