morriszms's picture
Upload folder using huggingface_hub
f65908b verified
|
raw
history blame
5.97 kB
metadata
license: mit
license_link: https://huggingface.co/microsoft/Phi-3-medium-4k-instruct/resolve/main/LICENSE
language:
  - multilingual
pipeline_tag: text-generation
tags:
  - nlp
  - code
  - TensorBlock
  - GGUF
inference:
  parameters:
    temperature: 0.7
widget:
  - messages:
      - role: user
        content: >-
          I'm looking to do something unethical online. How can I stay safe
          whilst doing so?
base_model: failspy/Phi-3-mini-128k-instruct-abliterated-v3
TensorBlock

Feedback and support: TensorBlock's Twitter/X, Telegram Group and Discord server

failspy/Phi-3-mini-128k-instruct-abliterated-v3 - GGUF

This repo contains GGUF format model files for failspy/Phi-3-mini-128k-instruct-abliterated-v3.

The files were quantized using machines provided by TensorBlock, and they are compatible with llama.cpp as of commit b4242.

Prompt template

<s><|user|>
{prompt}<|end|>
<|assistant|>

Model file specification

Filename Quant type File Size Description
Phi-3-mini-128k-instruct-abliterated-v3-Q2_K.gguf Q2_K 1.416 GB smallest, significant quality loss - not recommended for most purposes
Phi-3-mini-128k-instruct-abliterated-v3-Q3_K_S.gguf Q3_K_S 1.682 GB very small, high quality loss
Phi-3-mini-128k-instruct-abliterated-v3-Q3_K_M.gguf Q3_K_M 1.955 GB very small, high quality loss
Phi-3-mini-128k-instruct-abliterated-v3-Q3_K_L.gguf Q3_K_L 2.088 GB small, substantial quality loss
Phi-3-mini-128k-instruct-abliterated-v3-Q4_0.gguf Q4_0 2.176 GB legacy; small, very high quality loss - prefer using Q3_K_M
Phi-3-mini-128k-instruct-abliterated-v3-Q4_K_S.gguf Q4_K_S 2.189 GB small, greater quality loss
Phi-3-mini-128k-instruct-abliterated-v3-Q4_K_M.gguf Q4_K_M 2.393 GB medium, balanced quality - recommended
Phi-3-mini-128k-instruct-abliterated-v3-Q5_0.gguf Q5_0 2.641 GB legacy; medium, balanced quality - prefer using Q4_K_M
Phi-3-mini-128k-instruct-abliterated-v3-Q5_K_S.gguf Q5_K_S 2.641 GB large, low quality loss - recommended
Phi-3-mini-128k-instruct-abliterated-v3-Q5_K_M.gguf Q5_K_M 2.815 GB large, very low quality loss - recommended
Phi-3-mini-128k-instruct-abliterated-v3-Q6_K.gguf Q6_K 3.136 GB very large, extremely low quality loss
Phi-3-mini-128k-instruct-abliterated-v3-Q8_0.gguf Q8_0 4.061 GB very large, extremely low quality loss - not recommended

Downloading instruction

Command line

Firstly, install Huggingface Client

pip install -U "huggingface_hub[cli]"

Then, downoad the individual model file the a local directory

huggingface-cli download tensorblock/Phi-3-mini-128k-instruct-abliterated-v3-GGUF --include "Phi-3-mini-128k-instruct-abliterated-v3-Q2_K.gguf" --local-dir MY_LOCAL_DIR

If you wanna download multiple model files with a pattern (e.g., *Q4_K*gguf), you can try:

huggingface-cli download tensorblock/Phi-3-mini-128k-instruct-abliterated-v3-GGUF --local-dir MY_LOCAL_DIR --local-dir-use-symlinks False --include='*Q4_K*gguf'