---
license: mit
license_link: https://huggingface.co/microsoft/Phi-3-medium-4k-instruct/resolve/main/LICENSE
language:
- multilingual
pipeline_tag: text-generation
tags:
- nlp
- code
- TensorBlock
- GGUF
inference:
parameters:
temperature: 0.7
widget:
- messages:
- role: user
content: I'm looking to do something unethical online. How can I stay safe whilst
doing so?
base_model: failspy/Phi-3-mini-128k-instruct-abliterated-v3
---
## failspy/Phi-3-mini-128k-instruct-abliterated-v3 - GGUF
This repo contains GGUF format model files for [failspy/Phi-3-mini-128k-instruct-abliterated-v3](https://huggingface.co/failspy/Phi-3-mini-128k-instruct-abliterated-v3).
The files were quantized using machines provided by [TensorBlock](https://tensorblock.co/), and they are compatible with llama.cpp as of [commit b4242](https://github.com/ggerganov/llama.cpp/commit/a6744e43e80f4be6398fc7733a01642c846dce1d).
## Prompt template
```
<|user|>
{prompt}<|end|>
<|assistant|>
```
## Model file specification
| Filename | Quant type | File Size | Description |
| -------- | ---------- | --------- | ----------- |
| [Phi-3-mini-128k-instruct-abliterated-v3-Q2_K.gguf](https://huggingface.co/tensorblock/Phi-3-mini-128k-instruct-abliterated-v3-GGUF/blob/main/Phi-3-mini-128k-instruct-abliterated-v3-Q2_K.gguf) | Q2_K | 1.416 GB | smallest, significant quality loss - not recommended for most purposes |
| [Phi-3-mini-128k-instruct-abliterated-v3-Q3_K_S.gguf](https://huggingface.co/tensorblock/Phi-3-mini-128k-instruct-abliterated-v3-GGUF/blob/main/Phi-3-mini-128k-instruct-abliterated-v3-Q3_K_S.gguf) | Q3_K_S | 1.682 GB | very small, high quality loss |
| [Phi-3-mini-128k-instruct-abliterated-v3-Q3_K_M.gguf](https://huggingface.co/tensorblock/Phi-3-mini-128k-instruct-abliterated-v3-GGUF/blob/main/Phi-3-mini-128k-instruct-abliterated-v3-Q3_K_M.gguf) | Q3_K_M | 1.955 GB | very small, high quality loss |
| [Phi-3-mini-128k-instruct-abliterated-v3-Q3_K_L.gguf](https://huggingface.co/tensorblock/Phi-3-mini-128k-instruct-abliterated-v3-GGUF/blob/main/Phi-3-mini-128k-instruct-abliterated-v3-Q3_K_L.gguf) | Q3_K_L | 2.088 GB | small, substantial quality loss |
| [Phi-3-mini-128k-instruct-abliterated-v3-Q4_0.gguf](https://huggingface.co/tensorblock/Phi-3-mini-128k-instruct-abliterated-v3-GGUF/blob/main/Phi-3-mini-128k-instruct-abliterated-v3-Q4_0.gguf) | Q4_0 | 2.176 GB | legacy; small, very high quality loss - prefer using Q3_K_M |
| [Phi-3-mini-128k-instruct-abliterated-v3-Q4_K_S.gguf](https://huggingface.co/tensorblock/Phi-3-mini-128k-instruct-abliterated-v3-GGUF/blob/main/Phi-3-mini-128k-instruct-abliterated-v3-Q4_K_S.gguf) | Q4_K_S | 2.189 GB | small, greater quality loss |
| [Phi-3-mini-128k-instruct-abliterated-v3-Q4_K_M.gguf](https://huggingface.co/tensorblock/Phi-3-mini-128k-instruct-abliterated-v3-GGUF/blob/main/Phi-3-mini-128k-instruct-abliterated-v3-Q4_K_M.gguf) | Q4_K_M | 2.393 GB | medium, balanced quality - recommended |
| [Phi-3-mini-128k-instruct-abliterated-v3-Q5_0.gguf](https://huggingface.co/tensorblock/Phi-3-mini-128k-instruct-abliterated-v3-GGUF/blob/main/Phi-3-mini-128k-instruct-abliterated-v3-Q5_0.gguf) | Q5_0 | 2.641 GB | legacy; medium, balanced quality - prefer using Q4_K_M |
| [Phi-3-mini-128k-instruct-abliterated-v3-Q5_K_S.gguf](https://huggingface.co/tensorblock/Phi-3-mini-128k-instruct-abliterated-v3-GGUF/blob/main/Phi-3-mini-128k-instruct-abliterated-v3-Q5_K_S.gguf) | Q5_K_S | 2.641 GB | large, low quality loss - recommended |
| [Phi-3-mini-128k-instruct-abliterated-v3-Q5_K_M.gguf](https://huggingface.co/tensorblock/Phi-3-mini-128k-instruct-abliterated-v3-GGUF/blob/main/Phi-3-mini-128k-instruct-abliterated-v3-Q5_K_M.gguf) | Q5_K_M | 2.815 GB | large, very low quality loss - recommended |
| [Phi-3-mini-128k-instruct-abliterated-v3-Q6_K.gguf](https://huggingface.co/tensorblock/Phi-3-mini-128k-instruct-abliterated-v3-GGUF/blob/main/Phi-3-mini-128k-instruct-abliterated-v3-Q6_K.gguf) | Q6_K | 3.136 GB | very large, extremely low quality loss |
| [Phi-3-mini-128k-instruct-abliterated-v3-Q8_0.gguf](https://huggingface.co/tensorblock/Phi-3-mini-128k-instruct-abliterated-v3-GGUF/blob/main/Phi-3-mini-128k-instruct-abliterated-v3-Q8_0.gguf) | Q8_0 | 4.061 GB | very large, extremely low quality loss - not recommended |
## Downloading instruction
### Command line
Firstly, install Huggingface Client
```shell
pip install -U "huggingface_hub[cli]"
```
Then, downoad the individual model file the a local directory
```shell
huggingface-cli download tensorblock/Phi-3-mini-128k-instruct-abliterated-v3-GGUF --include "Phi-3-mini-128k-instruct-abliterated-v3-Q2_K.gguf" --local-dir MY_LOCAL_DIR
```
If you wanna download multiple model files with a pattern (e.g., `*Q4_K*gguf`), you can try:
```shell
huggingface-cli download tensorblock/Phi-3-mini-128k-instruct-abliterated-v3-GGUF --local-dir MY_LOCAL_DIR --local-dir-use-symlinks False --include='*Q4_K*gguf'
```