|
--- |
|
library_name: transformers |
|
license: gemma |
|
base_model: vidore/colpaligemma-3b-pt-448-base |
|
tags: |
|
- colpali |
|
- generated_from_trainer |
|
model-index: |
|
- name: finetune_colpali_v1_2-german_ver2-4bit |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# finetune_colpali_v1_2-german_ver2-4bit |
|
|
|
This model is a fine-tuned version of [vidore/colpaligemma-3b-pt-448-base](https://huggingface.co/vidore/colpaligemma-3b-pt-448-base) on the German_docx dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.0559 |
|
- Model Preparation Time: 0.0099 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 5e-05 |
|
- train_batch_size: 4 |
|
- eval_batch_size: 4 |
|
- seed: 42 |
|
- gradient_accumulation_steps: 4 |
|
- total_train_batch_size: 16 |
|
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments |
|
- lr_scheduler_type: linear |
|
- lr_scheduler_warmup_steps: 100 |
|
- num_epochs: 10 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Model Preparation Time | |
|
|:-------------:|:------:|:----:|:---------------:|:----------------------:| |
|
| No log | 0.0816 | 1 | 0.3744 | 0.0099 | |
|
| 1.6073 | 0.8163 | 10 | 0.3027 | 0.0099 | |
|
| 1.2318 | 1.6327 | 20 | 0.2157 | 0.0099 | |
|
| 0.6498 | 2.4490 | 30 | 0.1428 | 0.0099 | |
|
| 0.5073 | 3.2653 | 40 | 0.1181 | 0.0099 | |
|
| 0.5106 | 4.0816 | 50 | 0.1069 | 0.0099 | |
|
| 0.2965 | 4.8980 | 60 | 0.0969 | 0.0099 | |
|
| 0.3175 | 5.7143 | 70 | 0.0922 | 0.0099 | |
|
| 0.1775 | 6.5306 | 80 | 0.1089 | 0.0099 | |
|
| 0.1966 | 7.3469 | 90 | 0.0649 | 0.0099 | |
|
| 0.1317 | 8.1633 | 100 | 0.0477 | 0.0099 | |
|
| 0.1287 | 8.9796 | 110 | 0.0503 | 0.0099 | |
|
| 0.2576 | 9.7959 | 120 | 0.0559 | 0.0099 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.46.1 |
|
- Pytorch 2.3.1 |
|
- Datasets 3.1.0 |
|
- Tokenizers 0.20.1 |
|
|