File size: 2,602 Bytes
fb0ca5b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7283dc8
 
fb0ca5b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7283dc8
fb0ca5b
 
 
 
 
7283dc8
 
 
 
 
 
 
 
 
 
 
 
 
fb0ca5b
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
---
library_name: transformers
license: gemma
base_model: vidore/colpaligemma-3b-pt-448-base
tags:
- colpali
- generated_from_trainer
model-index:
- name: finetune_colpali_v1_2-german_ver2-4bit
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# finetune_colpali_v1_2-german_ver2-4bit

This model is a fine-tuned version of [vidore/colpaligemma-3b-pt-448-base](https://huggingface.co/vidore/colpaligemma-3b-pt-448-base) on the German_docx dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0559
- Model Preparation Time: 0.0099

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 16
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 100
- num_epochs: 10

### Training results

| Training Loss | Epoch  | Step | Validation Loss | Model Preparation Time |
|:-------------:|:------:|:----:|:---------------:|:----------------------:|
| No log        | 0.0816 | 1    | 0.3744          | 0.0099                 |
| 1.6073        | 0.8163 | 10   | 0.3027          | 0.0099                 |
| 1.2318        | 1.6327 | 20   | 0.2157          | 0.0099                 |
| 0.6498        | 2.4490 | 30   | 0.1428          | 0.0099                 |
| 0.5073        | 3.2653 | 40   | 0.1181          | 0.0099                 |
| 0.5106        | 4.0816 | 50   | 0.1069          | 0.0099                 |
| 0.2965        | 4.8980 | 60   | 0.0969          | 0.0099                 |
| 0.3175        | 5.7143 | 70   | 0.0922          | 0.0099                 |
| 0.1775        | 6.5306 | 80   | 0.1089          | 0.0099                 |
| 0.1966        | 7.3469 | 90   | 0.0649          | 0.0099                 |
| 0.1317        | 8.1633 | 100  | 0.0477          | 0.0099                 |
| 0.1287        | 8.9796 | 110  | 0.0503          | 0.0099                 |
| 0.2576        | 9.7959 | 120  | 0.0559          | 0.0099                 |


### Framework versions

- Transformers 4.46.1
- Pytorch 2.3.1
- Datasets 3.1.0
- Tokenizers 0.20.1