|
--- |
|
license: other |
|
base_model: nvidia/mit-b0 |
|
tags: |
|
- vision |
|
- image-segmentation |
|
- generated_from_trainer |
|
model-index: |
|
- name: foot-finetune-28-jan |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# foot-finetune-28-jan |
|
|
|
This model is a fine-tuned version of [nvidia/mit-b0](https://huggingface.co/nvidia/mit-b0) on the suncy13/FootImg dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.1107 |
|
- Mean Iou: 0.0 |
|
- Mean Accuracy: nan |
|
- Overall Accuracy: nan |
|
- Accuracy Foot: nan |
|
- Iou Foot: 0.0 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 6e-05 |
|
- train_batch_size: 2 |
|
- eval_batch_size: 2 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 50 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Mean Iou | Mean Accuracy | Overall Accuracy | Accuracy Foot | Iou Foot | |
|
|:-------------:|:-----:|:----:|:---------------:|:--------:|:-------------:|:----------------:|:-------------:|:--------:| |
|
| 0.356 | 2.0 | 20 | 0.5295 | 0.0 | nan | nan | nan | 0.0 | |
|
| 0.2927 | 4.0 | 40 | 0.3244 | 0.0 | nan | nan | nan | 0.0 | |
|
| 0.2511 | 6.0 | 60 | 0.2386 | 0.0 | nan | nan | nan | 0.0 | |
|
| 0.2458 | 8.0 | 80 | 0.2305 | 0.0 | nan | nan | nan | 0.0 | |
|
| 0.2152 | 10.0 | 100 | 0.2065 | 0.0 | nan | nan | nan | 0.0 | |
|
| 0.1996 | 12.0 | 120 | 0.1905 | 0.0 | nan | nan | nan | 0.0 | |
|
| 0.1878 | 14.0 | 140 | 0.1823 | 0.0 | nan | nan | nan | 0.0 | |
|
| 0.1902 | 16.0 | 160 | 0.1743 | 0.0 | nan | nan | nan | 0.0 | |
|
| 0.1646 | 18.0 | 180 | 0.1572 | 0.0 | nan | nan | nan | 0.0 | |
|
| 0.1512 | 20.0 | 200 | 0.1552 | 0.0 | nan | nan | nan | 0.0 | |
|
| 0.1438 | 22.0 | 220 | 0.1415 | 0.0 | nan | nan | nan | 0.0 | |
|
| 0.1355 | 24.0 | 240 | 0.1424 | 0.0 | nan | nan | nan | 0.0 | |
|
| 0.1342 | 26.0 | 260 | 0.1322 | 0.0 | nan | nan | nan | 0.0 | |
|
| 0.1355 | 28.0 | 280 | 0.1307 | 0.0 | nan | nan | nan | 0.0 | |
|
| 0.1198 | 30.0 | 300 | 0.1238 | 0.0 | nan | nan | nan | 0.0 | |
|
| 0.1179 | 32.0 | 320 | 0.1229 | 0.0 | nan | nan | nan | 0.0 | |
|
| 0.1108 | 34.0 | 340 | 0.1196 | 0.0 | nan | nan | nan | 0.0 | |
|
| 0.1145 | 36.0 | 360 | 0.1182 | 0.0 | nan | nan | nan | 0.0 | |
|
| 0.1097 | 38.0 | 380 | 0.1168 | 0.0 | nan | nan | nan | 0.0 | |
|
| 0.1199 | 40.0 | 400 | 0.1164 | 0.0 | nan | nan | nan | 0.0 | |
|
| 0.1185 | 42.0 | 420 | 0.1138 | 0.0 | nan | nan | nan | 0.0 | |
|
| 0.1026 | 44.0 | 440 | 0.1115 | 0.0 | nan | nan | nan | 0.0 | |
|
| 0.1039 | 46.0 | 460 | 0.1100 | 0.0 | nan | nan | nan | 0.0 | |
|
| 0.1091 | 48.0 | 480 | 0.1107 | 0.0 | nan | nan | nan | 0.0 | |
|
| 0.1074 | 50.0 | 500 | 0.1107 | 0.0 | nan | nan | nan | 0.0 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.37.1 |
|
- Pytorch 2.1.0+cu121 |
|
- Datasets 2.16.1 |
|
- Tokenizers 0.15.1 |
|
|