--- license: other base_model: nvidia/mit-b0 tags: - vision - image-segmentation - generated_from_trainer model-index: - name: foot-finetune-28-jan results: [] --- # foot-finetune-28-jan This model is a fine-tuned version of [nvidia/mit-b0](https://huggingface.co/nvidia/mit-b0) on the suncy13/FootImg dataset. It achieves the following results on the evaluation set: - Loss: 0.1107 - Mean Iou: 0.0 - Mean Accuracy: nan - Overall Accuracy: nan - Accuracy Foot: nan - Iou Foot: 0.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 6e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | Mean Iou | Mean Accuracy | Overall Accuracy | Accuracy Foot | Iou Foot | |:-------------:|:-----:|:----:|:---------------:|:--------:|:-------------:|:----------------:|:-------------:|:--------:| | 0.356 | 2.0 | 20 | 0.5295 | 0.0 | nan | nan | nan | 0.0 | | 0.2927 | 4.0 | 40 | 0.3244 | 0.0 | nan | nan | nan | 0.0 | | 0.2511 | 6.0 | 60 | 0.2386 | 0.0 | nan | nan | nan | 0.0 | | 0.2458 | 8.0 | 80 | 0.2305 | 0.0 | nan | nan | nan | 0.0 | | 0.2152 | 10.0 | 100 | 0.2065 | 0.0 | nan | nan | nan | 0.0 | | 0.1996 | 12.0 | 120 | 0.1905 | 0.0 | nan | nan | nan | 0.0 | | 0.1878 | 14.0 | 140 | 0.1823 | 0.0 | nan | nan | nan | 0.0 | | 0.1902 | 16.0 | 160 | 0.1743 | 0.0 | nan | nan | nan | 0.0 | | 0.1646 | 18.0 | 180 | 0.1572 | 0.0 | nan | nan | nan | 0.0 | | 0.1512 | 20.0 | 200 | 0.1552 | 0.0 | nan | nan | nan | 0.0 | | 0.1438 | 22.0 | 220 | 0.1415 | 0.0 | nan | nan | nan | 0.0 | | 0.1355 | 24.0 | 240 | 0.1424 | 0.0 | nan | nan | nan | 0.0 | | 0.1342 | 26.0 | 260 | 0.1322 | 0.0 | nan | nan | nan | 0.0 | | 0.1355 | 28.0 | 280 | 0.1307 | 0.0 | nan | nan | nan | 0.0 | | 0.1198 | 30.0 | 300 | 0.1238 | 0.0 | nan | nan | nan | 0.0 | | 0.1179 | 32.0 | 320 | 0.1229 | 0.0 | nan | nan | nan | 0.0 | | 0.1108 | 34.0 | 340 | 0.1196 | 0.0 | nan | nan | nan | 0.0 | | 0.1145 | 36.0 | 360 | 0.1182 | 0.0 | nan | nan | nan | 0.0 | | 0.1097 | 38.0 | 380 | 0.1168 | 0.0 | nan | nan | nan | 0.0 | | 0.1199 | 40.0 | 400 | 0.1164 | 0.0 | nan | nan | nan | 0.0 | | 0.1185 | 42.0 | 420 | 0.1138 | 0.0 | nan | nan | nan | 0.0 | | 0.1026 | 44.0 | 440 | 0.1115 | 0.0 | nan | nan | nan | 0.0 | | 0.1039 | 46.0 | 460 | 0.1100 | 0.0 | nan | nan | nan | 0.0 | | 0.1091 | 48.0 | 480 | 0.1107 | 0.0 | nan | nan | nan | 0.0 | | 0.1074 | 50.0 | 500 | 0.1107 | 0.0 | nan | nan | nan | 0.0 | ### Framework versions - Transformers 4.37.1 - Pytorch 2.1.0+cu121 - Datasets 2.16.1 - Tokenizers 0.15.1