|
--- |
|
library_name: transformers |
|
license: apache-2.0 |
|
base_model: answerdotai/ModernBERT-base |
|
tags: |
|
- generated_from_trainer |
|
metrics: |
|
- precision |
|
- recall |
|
- f1 |
|
- accuracy |
|
model-index: |
|
- name: edu-modernbert |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# edu-modernbert |
|
|
|
This model is a fine-tuned version of [answerdotai/ModernBERT-base](https://huggingface.co/answerdotai/ModernBERT-base) on an unknown dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.2863 |
|
- Precision: 0.5402 |
|
- Recall: 0.3945 |
|
- F1: 0.4305 |
|
- Accuracy: 0.6822 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 0.0003 |
|
- train_batch_size: 1024 |
|
- eval_batch_size: 512 |
|
- seed: 0 |
|
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments |
|
- lr_scheduler_type: linear |
|
- num_epochs: 20 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |
|
|:-------------:|:-------:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| |
|
| No log | 0 | 0 | 1.7219 | 0.1827 | 0.1714 | 0.0934 | 0.2345 | |
|
| 0.3195 | 2.4331 | 1000 | 0.3180 | 0.5267 | 0.3632 | 0.3841 | 0.6562 | |
|
| 0.3096 | 4.8662 | 2000 | 0.3028 | 0.5275 | 0.3827 | 0.4108 | 0.6652 | |
|
| 0.3027 | 7.2993 | 3000 | 0.2985 | 0.5332 | 0.3905 | 0.4223 | 0.6681 | |
|
| 0.3004 | 9.7324 | 4000 | 0.2919 | 0.5392 | 0.3867 | 0.4204 | 0.6774 | |
|
| 0.2965 | 12.1655 | 5000 | 0.2896 | 0.5345 | 0.3970 | 0.4311 | 0.6788 | |
|
| 0.2942 | 14.5985 | 6000 | 0.2885 | 0.5355 | 0.3960 | 0.4312 | 0.6819 | |
|
| 0.287 | 17.0316 | 7000 | 0.2912 | 0.5360 | 0.3813 | 0.4170 | 0.6828 | |
|
| 0.2893 | 19.4647 | 8000 | 0.2863 | 0.5402 | 0.3945 | 0.4305 | 0.6822 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.48.0.dev0 |
|
- Pytorch 2.5.1+cu121 |
|
- Datasets 3.2.0 |
|
- Tokenizers 0.21.0 |
|
|