--- library_name: transformers license: apache-2.0 base_model: answerdotai/ModernBERT-base tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: edu-modernbert results: [] --- # edu-modernbert This model is a fine-tuned version of [answerdotai/ModernBERT-base](https://huggingface.co/answerdotai/ModernBERT-base) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.2863 - Precision: 0.5402 - Recall: 0.3945 - F1: 0.4305 - Accuracy: 0.6822 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 1024 - eval_batch_size: 512 - seed: 0 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 20 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-------:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 0 | 0 | 1.7219 | 0.1827 | 0.1714 | 0.0934 | 0.2345 | | 0.3195 | 2.4331 | 1000 | 0.3180 | 0.5267 | 0.3632 | 0.3841 | 0.6562 | | 0.3096 | 4.8662 | 2000 | 0.3028 | 0.5275 | 0.3827 | 0.4108 | 0.6652 | | 0.3027 | 7.2993 | 3000 | 0.2985 | 0.5332 | 0.3905 | 0.4223 | 0.6681 | | 0.3004 | 9.7324 | 4000 | 0.2919 | 0.5392 | 0.3867 | 0.4204 | 0.6774 | | 0.2965 | 12.1655 | 5000 | 0.2896 | 0.5345 | 0.3970 | 0.4311 | 0.6788 | | 0.2942 | 14.5985 | 6000 | 0.2885 | 0.5355 | 0.3960 | 0.4312 | 0.6819 | | 0.287 | 17.0316 | 7000 | 0.2912 | 0.5360 | 0.3813 | 0.4170 | 0.6828 | | 0.2893 | 19.4647 | 8000 | 0.2863 | 0.5402 | 0.3945 | 0.4305 | 0.6822 | ### Framework versions - Transformers 4.48.0.dev0 - Pytorch 2.5.1+cu121 - Datasets 3.2.0 - Tokenizers 0.21.0