Spaces:
Sleeping
Sleeping
import os | |
import streamlit as st | |
from langchain_groq import ChatGroq | |
from langchain.text_splitter import RecursiveCharacterTextSplitter | |
from langchain.chains.combine_documents import create_stuff_documents_chain | |
from langchain_core.prompts import ChatPromptTemplate | |
from langchain.chains import create_retrieval_chain | |
from langchain_community.vectorstores import FAISS | |
from langchain_community.document_loaders import PyPDFLoader | |
from langchain_google_genai import GoogleGenerativeAIEmbeddings | |
import tempfile | |
from dotenv import load_dotenv | |
load_dotenv() | |
## Load the GROQ and Google API key | |
groq_api_key = os.getenv('GROQ_API_KEY') | |
os.environ["GOOGLE_API_KEY"] = os.getenv('GOOGLE_API_KEY') | |
st.title("Gemma Model Document Q&A") | |
llm = ChatGroq(groq_api_key=groq_api_key, model_name="gemma2-9b-it") | |
prompt = ChatPromptTemplate.from_template( | |
""" | |
Answer the questions based on the provided context only. | |
Please provide the most accurate response based on the question | |
<context> | |
{context} | |
<context> | |
Questions: {input} | |
""" | |
) | |
def vector_embedding(pdf_files): | |
st.session_state.embeddings = GoogleGenerativeAIEmbeddings(model="models/embedding-001") | |
docs = [] | |
for pdf_file in pdf_files: | |
with tempfile.NamedTemporaryFile(delete=False, suffix=".pdf") as temp_file: | |
temp_file.write(pdf_file.read()) | |
temp_file_path = temp_file.name | |
loader = PyPDFLoader(temp_file_path) | |
docs.extend(loader.load()) | |
text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=200) | |
final_documents = text_splitter.split_documents(docs[:20]) | |
st.session_state.vectors = FAISS.from_documents(final_documents, st.session_state.embeddings) | |
# File uploader | |
uploaded_files = st.file_uploader("Upload PDF files", accept_multiple_files=True, type=["pdf"]) | |
if uploaded_files and st.button("Process Uploaded Files"): | |
vector_embedding(uploaded_files) | |
st.write("Vector Store DB is Ready") | |
prompt1 = st.text_input("What do you want to ask from the documents?") | |
import time | |
if prompt1: | |
if "vectors" in st.session_state: | |
document_chain = create_stuff_documents_chain(llm, prompt) | |
retriever = st.session_state.vectors.as_retriever() | |
retrieval_chain = create_retrieval_chain(retriever, document_chain) | |
start = time.process_time() | |
response = retrieval_chain.invoke({'input': prompt1}) | |
st.write(response['answer']) | |
# With a Streamlit expander | |
with st.expander("Document Similarity Search"): | |
# Find the relevant chunks | |
for i, doc in enumerate(response["context"]): | |
st.write(doc.page_content) | |
st.write("--------------------------------") | |
else: | |
st.write("Please upload and process PDF files first.") | |