File size: 2,919 Bytes
4c2ce47
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
import os
import streamlit as st
from langchain_groq import ChatGroq
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain.chains.combine_documents import create_stuff_documents_chain
from langchain_core.prompts import ChatPromptTemplate
from langchain.chains import create_retrieval_chain
from langchain_community.vectorstores import FAISS
from langchain_community.document_loaders import PyPDFLoader
from langchain_google_genai import GoogleGenerativeAIEmbeddings
import tempfile
from dotenv import load_dotenv

load_dotenv()

## Load the GROQ and Google API key

groq_api_key = os.getenv('GROQ_API_KEY')
os.environ["GOOGLE_API_KEY"] = os.getenv('GOOGLE_API_KEY')

st.title("Gemma Model Document Q&A")

llm = ChatGroq(groq_api_key=groq_api_key, model_name="gemma2-9b-it")

prompt = ChatPromptTemplate.from_template(
    """

    Answer the questions based on the provided context only.

    Please provide the most accurate response based on the question

    <context>

    {context}

    <context>

    Questions: {input}

    """
)

def vector_embedding(pdf_files):
    st.session_state.embeddings = GoogleGenerativeAIEmbeddings(model="models/embedding-001")
    docs = []
    for pdf_file in pdf_files:
        with tempfile.NamedTemporaryFile(delete=False, suffix=".pdf") as temp_file:
            temp_file.write(pdf_file.read())
            temp_file_path = temp_file.name
        loader = PyPDFLoader(temp_file_path)
        docs.extend(loader.load())
    text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=200)
    final_documents = text_splitter.split_documents(docs[:20])
    st.session_state.vectors = FAISS.from_documents(final_documents, st.session_state.embeddings)

# File uploader
uploaded_files = st.file_uploader("Upload PDF files", accept_multiple_files=True, type=["pdf"])

if uploaded_files and st.button("Process Uploaded Files"):
    vector_embedding(uploaded_files)
    st.write("Vector Store DB is Ready")

prompt1 = st.text_input("What do you want to ask from the documents?")

import time

if prompt1:
    if "vectors" in st.session_state:
        document_chain = create_stuff_documents_chain(llm, prompt)  
        retriever = st.session_state.vectors.as_retriever()
        retrieval_chain = create_retrieval_chain(retriever, document_chain)
        
        start = time.process_time()
        response = retrieval_chain.invoke({'input': prompt1})
        st.write(response['answer'])
        
        # With a Streamlit expander
        with st.expander("Document Similarity Search"):
            # Find the relevant chunks
            for i, doc in enumerate(response["context"]):
                st.write(doc.page_content)
                st.write("--------------------------------")
    else:
        st.write("Please upload and process PDF files first.")