zainikhan34 commited on
Commit
4c2ce47
·
verified ·
1 Parent(s): f5593b7

Upload 2 files

Browse files
Files changed (2) hide show
  1. app.py +77 -0
  2. requirements.txt +10 -0
app.py ADDED
@@ -0,0 +1,77 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import streamlit as st
3
+ from langchain_groq import ChatGroq
4
+ from langchain.text_splitter import RecursiveCharacterTextSplitter
5
+ from langchain.chains.combine_documents import create_stuff_documents_chain
6
+ from langchain_core.prompts import ChatPromptTemplate
7
+ from langchain.chains import create_retrieval_chain
8
+ from langchain_community.vectorstores import FAISS
9
+ from langchain_community.document_loaders import PyPDFLoader
10
+ from langchain_google_genai import GoogleGenerativeAIEmbeddings
11
+ import tempfile
12
+ from dotenv import load_dotenv
13
+
14
+ load_dotenv()
15
+
16
+ ## Load the GROQ and Google API key
17
+
18
+ groq_api_key = os.getenv('GROQ_API_KEY')
19
+ os.environ["GOOGLE_API_KEY"] = os.getenv('GOOGLE_API_KEY')
20
+
21
+ st.title("Gemma Model Document Q&A")
22
+
23
+ llm = ChatGroq(groq_api_key=groq_api_key, model_name="gemma2-9b-it")
24
+
25
+ prompt = ChatPromptTemplate.from_template(
26
+ """
27
+ Answer the questions based on the provided context only.
28
+ Please provide the most accurate response based on the question
29
+ <context>
30
+ {context}
31
+ <context>
32
+ Questions: {input}
33
+ """
34
+ )
35
+
36
+ def vector_embedding(pdf_files):
37
+ st.session_state.embeddings = GoogleGenerativeAIEmbeddings(model="models/embedding-001")
38
+ docs = []
39
+ for pdf_file in pdf_files:
40
+ with tempfile.NamedTemporaryFile(delete=False, suffix=".pdf") as temp_file:
41
+ temp_file.write(pdf_file.read())
42
+ temp_file_path = temp_file.name
43
+ loader = PyPDFLoader(temp_file_path)
44
+ docs.extend(loader.load())
45
+ text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=200)
46
+ final_documents = text_splitter.split_documents(docs[:20])
47
+ st.session_state.vectors = FAISS.from_documents(final_documents, st.session_state.embeddings)
48
+
49
+ # File uploader
50
+ uploaded_files = st.file_uploader("Upload PDF files", accept_multiple_files=True, type=["pdf"])
51
+
52
+ if uploaded_files and st.button("Process Uploaded Files"):
53
+ vector_embedding(uploaded_files)
54
+ st.write("Vector Store DB is Ready")
55
+
56
+ prompt1 = st.text_input("What do you want to ask from the documents?")
57
+
58
+ import time
59
+
60
+ if prompt1:
61
+ if "vectors" in st.session_state:
62
+ document_chain = create_stuff_documents_chain(llm, prompt)
63
+ retriever = st.session_state.vectors.as_retriever()
64
+ retrieval_chain = create_retrieval_chain(retriever, document_chain)
65
+
66
+ start = time.process_time()
67
+ response = retrieval_chain.invoke({'input': prompt1})
68
+ st.write(response['answer'])
69
+
70
+ # With a Streamlit expander
71
+ with st.expander("Document Similarity Search"):
72
+ # Find the relevant chunks
73
+ for i, doc in enumerate(response["context"]):
74
+ st.write(doc.page_content)
75
+ st.write("--------------------------------")
76
+ else:
77
+ st.write("Please upload and process PDF files first.")
requirements.txt ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ faiss-cpu
2
+ groq
3
+ langchain-groq
4
+ PyPDF2
5
+ langchain_google_genai
6
+ langchain
7
+ streamlit
8
+ langchain_community
9
+ python-dotenv
10
+ pypdf