Spaces:
Running
on
Zero
Running
on
Zero
# Copyright 2024 The CogVideoX team, Tsinghua University & ZhipuAI and The HuggingFace Team. | |
# All rights reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
from typing import Any, Dict, Optional, Tuple, Union | |
import torch | |
from torch import nn | |
import torch.nn.functional as F | |
import numpy as np | |
from einops import rearrange | |
from diffusers.configuration_utils import ConfigMixin, register_to_config | |
from diffusers.utils import logging | |
from diffusers.utils.torch_utils import maybe_allow_in_graph | |
from diffusers.models.attention import Attention, FeedForward | |
from diffusers.models.attention_processor import AttentionProcessor | |
from diffusers.models.embeddings import TimestepEmbedding, Timesteps | |
from diffusers.models.modeling_outputs import Transformer2DModelOutput | |
from diffusers.models.modeling_utils import ModelMixin | |
from diffusers.models.normalization import AdaLayerNorm, CogVideoXLayerNormZero | |
from diffusers.loaders import PeftAdapterMixin | |
from diffusers.models.embeddings import apply_rotary_emb | |
from .embeddings import CogVideoXPatchEmbed | |
from .enhance_a_video.enhance import get_feta_scores | |
from .enhance_a_video.globals import is_enhance_enabled, set_num_frames | |
logger = logging.get_logger(__name__) # pylint: disable=invalid-name | |
try: | |
from sageattention import sageattn | |
SAGEATTN_IS_AVAILABLE = True | |
except: | |
SAGEATTN_IS_AVAILABLE = False | |
from comfy.ldm.modules.attention import optimized_attention | |
def set_attention_func(attention_mode, heads): | |
if attention_mode == "sdpa" or attention_mode == "fused_sdpa": | |
def func(q, k, v, is_causal=False, attn_mask=None): | |
return F.scaled_dot_product_attention(q, k, v, attn_mask=attn_mask, dropout_p=0.0, is_causal=is_causal) | |
return func | |
elif attention_mode == "comfy": | |
def func(q, k, v, is_causal=False, attn_mask=None): | |
return optimized_attention(q, k, v, mask=attn_mask, heads=heads, skip_reshape=True) | |
return func | |
elif attention_mode == "sageattn" or attention_mode == "fused_sageattn": | |
def func(q, k, v, is_causal=False, attn_mask=None): | |
return sageattn(q.to(v), k.to(v), v, is_causal=is_causal, attn_mask=attn_mask) | |
return func | |
elif attention_mode == "sageattn_qk_int8_pv_fp16_cuda": | |
from sageattention import sageattn_qk_int8_pv_fp16_cuda | |
def func(q, k, v, is_causal=False, attn_mask=None): | |
return sageattn_qk_int8_pv_fp16_cuda(q.to(v), k.to(v), v, is_causal=is_causal, attn_mask=attn_mask, pv_accum_dtype="fp32") | |
return func | |
elif attention_mode == "sageattn_qk_int8_pv_fp16_triton": | |
from sageattention import sageattn_qk_int8_pv_fp16_triton | |
def func(q, k, v, is_causal=False, attn_mask=None): | |
return sageattn_qk_int8_pv_fp16_triton(q.to(v), k.to(v), v, is_causal=is_causal, attn_mask=attn_mask) | |
return func | |
elif attention_mode == "sageattn_qk_int8_pv_fp8_cuda": | |
from sageattention import sageattn_qk_int8_pv_fp8_cuda | |
def func(q, k, v, is_causal=False, attn_mask=None): | |
return sageattn_qk_int8_pv_fp8_cuda(q.to(v), k.to(v), v, is_causal=is_causal, attn_mask=attn_mask, pv_accum_dtype="fp32+fp32") | |
return func | |
#for fastercache | |
def fft(tensor): | |
tensor_fft = torch.fft.fft2(tensor) | |
tensor_fft_shifted = torch.fft.fftshift(tensor_fft) | |
B, C, H, W = tensor.size() | |
radius = min(H, W) // 5 | |
Y, X = torch.meshgrid(torch.arange(H), torch.arange(W)) | |
center_x, center_y = W // 2, H // 2 | |
mask = (X - center_x) ** 2 + (Y - center_y) ** 2 <= radius ** 2 | |
low_freq_mask = mask.unsqueeze(0).unsqueeze(0).to(tensor.device) | |
high_freq_mask = ~low_freq_mask | |
low_freq_fft = tensor_fft_shifted * low_freq_mask | |
high_freq_fft = tensor_fft_shifted * high_freq_mask | |
return low_freq_fft, high_freq_fft | |
#for teacache | |
def poly1d(coefficients, x): | |
result = torch.zeros_like(x) | |
for i, coeff in enumerate(coefficients): | |
result += coeff * (x ** (len(coefficients) - 1 - i)) | |
return result.abs() | |
#region Attention | |
class CogVideoXAttnProcessor2_0: | |
r""" | |
Processor for implementing scaled dot-product attention for the CogVideoX model. It applies a rotary embedding on | |
query and key vectors, but does not include spatial normalization. | |
""" | |
def __init__(self, attn_func, attention_mode: Optional[str] = None): | |
if not hasattr(F, "scaled_dot_product_attention"): | |
raise ImportError("CogVideoXAttnProcessor requires PyTorch 2.0, to use it, please upgrade PyTorch to 2.0.") | |
self.attention_mode = attention_mode | |
self.attn_func = attn_func | |
def __call__( | |
self, | |
attn: Attention, | |
hidden_states: torch.Tensor, | |
encoder_hidden_states: torch.Tensor, | |
attention_mask: Optional[torch.Tensor] = None, | |
image_rotary_emb: Optional[torch.Tensor] = None, | |
) -> torch.Tensor: | |
text_seq_length = encoder_hidden_states.size(1) | |
hidden_states = torch.cat([encoder_hidden_states, hidden_states], dim=1) | |
batch_size, sequence_length, _ = ( | |
hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape | |
) | |
if attention_mask is not None: | |
attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size) | |
attention_mask = attention_mask.view(batch_size, attn.heads, -1, attention_mask.shape[-1]) | |
if attn.to_q.weight.dtype == torch.float16 or attn.to_q.weight.dtype == torch.bfloat16: | |
hidden_states = hidden_states.to(attn.to_q.weight.dtype) | |
if not "fused" in self.attention_mode: | |
query = attn.to_q(hidden_states) | |
key = attn.to_k(hidden_states) | |
value = attn.to_v(hidden_states) | |
else: | |
qkv = attn.to_qkv(hidden_states) | |
split_size = qkv.shape[-1] // 3 | |
query, key, value = torch.split(qkv, split_size, dim=-1) | |
inner_dim = key.shape[-1] | |
head_dim = inner_dim // attn.heads | |
query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) | |
key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) | |
value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) | |
if attn.norm_q is not None: | |
query = attn.norm_q(query) | |
if attn.norm_k is not None: | |
key = attn.norm_k(key) | |
# Apply RoPE if needed | |
if image_rotary_emb is not None: | |
query[:, :, text_seq_length:] = apply_rotary_emb(query[:, :, text_seq_length:], image_rotary_emb) | |
if not attn.is_cross_attention: | |
key[:, :, text_seq_length:] = apply_rotary_emb(key[:, :, text_seq_length:], image_rotary_emb) | |
#feta | |
if is_enhance_enabled(): | |
feta_scores = get_feta_scores(attn, query, key, head_dim, text_seq_length) | |
hidden_states = self.attn_func(query, key, value, attn_mask=attention_mask, is_causal=False) | |
if self.attention_mode != "comfy": | |
hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim) | |
# linear proj | |
hidden_states = attn.to_out[0](hidden_states) | |
# dropout | |
hidden_states = attn.to_out[1](hidden_states) | |
encoder_hidden_states, hidden_states = hidden_states.split( | |
[text_seq_length, hidden_states.size(1) - text_seq_length], dim=1 | |
) | |
if is_enhance_enabled(): | |
hidden_states *= feta_scores | |
return hidden_states, encoder_hidden_states | |
#region Blocks | |
class CogVideoXBlock(nn.Module): | |
r""" | |
Transformer block used in [CogVideoX](https://github.com/THUDM/CogVideo) model. | |
Parameters: | |
dim (`int`): | |
The number of channels in the input and output. | |
num_attention_heads (`int`): | |
The number of heads to use for multi-head attention. | |
attention_head_dim (`int`): | |
The number of channels in each head. | |
time_embed_dim (`int`): | |
The number of channels in timestep embedding. | |
dropout (`float`, defaults to `0.0`): | |
The dropout probability to use. | |
activation_fn (`str`, defaults to `"gelu-approximate"`): | |
Activation function to be used in feed-forward. | |
attention_bias (`bool`, defaults to `False`): | |
Whether or not to use bias in attention projection layers. | |
qk_norm (`bool`, defaults to `True`): | |
Whether or not to use normalization after query and key projections in Attention. | |
norm_elementwise_affine (`bool`, defaults to `True`): | |
Whether to use learnable elementwise affine parameters for normalization. | |
norm_eps (`float`, defaults to `1e-5`): | |
Epsilon value for normalization layers. | |
final_dropout (`bool` defaults to `False`): | |
Whether to apply a final dropout after the last feed-forward layer. | |
ff_inner_dim (`int`, *optional*, defaults to `None`): | |
Custom hidden dimension of Feed-forward layer. If not provided, `4 * dim` is used. | |
ff_bias (`bool`, defaults to `True`): | |
Whether or not to use bias in Feed-forward layer. | |
attention_out_bias (`bool`, defaults to `True`): | |
Whether or not to use bias in Attention output projection layer. | |
""" | |
def __init__( | |
self, | |
dim: int, | |
num_attention_heads: int, | |
attention_head_dim: int, | |
time_embed_dim: int, | |
dropout: float = 0.0, | |
activation_fn: str = "gelu-approximate", | |
attention_bias: bool = False, | |
qk_norm: bool = True, | |
norm_elementwise_affine: bool = True, | |
norm_eps: float = 1e-5, | |
final_dropout: bool = True, | |
ff_inner_dim: Optional[int] = None, | |
ff_bias: bool = True, | |
attention_out_bias: bool = True, | |
attention_mode: Optional[str] = "sdpa", | |
): | |
super().__init__() | |
# 1. Self Attention | |
self.norm1 = CogVideoXLayerNormZero(time_embed_dim, dim, norm_elementwise_affine, norm_eps, bias=True) | |
attn_func = set_attention_func(attention_mode, num_attention_heads) | |
self.attn1 = Attention( | |
query_dim=dim, | |
dim_head=attention_head_dim, | |
heads=num_attention_heads, | |
qk_norm="layer_norm" if qk_norm else None, | |
eps=1e-6, | |
bias=attention_bias, | |
out_bias=attention_out_bias, | |
processor=CogVideoXAttnProcessor2_0(attn_func, attention_mode=attention_mode), | |
) | |
# 2. Feed Forward | |
self.norm2 = CogVideoXLayerNormZero(time_embed_dim, dim, norm_elementwise_affine, norm_eps, bias=True) | |
self.ff = FeedForward( | |
dim, | |
dropout=dropout, | |
activation_fn=activation_fn, | |
final_dropout=final_dropout, | |
inner_dim=ff_inner_dim, | |
bias=ff_bias, | |
) | |
self.cached_hidden_states = [] | |
self.cached_encoder_hidden_states = [] | |
def forward( | |
self, | |
hidden_states: torch.Tensor, | |
encoder_hidden_states: torch.Tensor, | |
temb: torch.Tensor, | |
image_rotary_emb: Optional[Tuple[torch.Tensor, torch.Tensor]] = None, | |
video_flow_feature: Optional[torch.Tensor] = None, | |
fuser=None, | |
block_use_fastercache=False, | |
fastercache_counter=0, | |
fastercache_start_step=15, | |
fastercache_device="cuda:0", | |
) -> torch.Tensor: | |
#print("hidden_states in block: ", hidden_states.shape) #1.5: torch.Size([2, 3200, 3072]) 10.: torch.Size([2, 6400, 3072]) | |
text_seq_length = encoder_hidden_states.size(1) | |
# norm & modulate | |
norm_hidden_states, norm_encoder_hidden_states, gate_msa, enc_gate_msa = self.norm1( | |
hidden_states, encoder_hidden_states, temb | |
) | |
#print("norm_hidden_states in block: ", norm_hidden_states.shape) #torch.Size([2, 3200, 3072]) | |
# Tora Motion-guidance Fuser | |
if video_flow_feature is not None: | |
H, W = video_flow_feature.shape[-2:] | |
T = norm_hidden_states.shape[1] // H // W | |
h = rearrange(norm_hidden_states, "B (T H W) C -> (B T) C H W", H=H, W=W) | |
h = fuser(h, video_flow_feature.to(h), T=T) | |
norm_hidden_states = rearrange(h, "(B T) C H W -> B (T H W) C", T=T) | |
del h, fuser | |
#region fastercache | |
if block_use_fastercache: | |
B = norm_hidden_states.shape[0] | |
if fastercache_counter >= fastercache_start_step + 3 and fastercache_counter%3!=0 and self.cached_hidden_states[-1].shape[0] >= B: | |
attn_hidden_states = ( | |
self.cached_hidden_states[1][:B] + | |
(self.cached_hidden_states[1][:B] - self.cached_hidden_states[0][:B]) | |
* 0.3 | |
).to(norm_hidden_states.device, non_blocking=True) | |
attn_encoder_hidden_states = ( | |
self.cached_encoder_hidden_states[1][:B] + | |
(self.cached_encoder_hidden_states[1][:B] - self.cached_encoder_hidden_states[0][:B]) | |
* 0.3 | |
).to(norm_hidden_states.device, non_blocking=True) | |
else: | |
attn_hidden_states, attn_encoder_hidden_states = self.attn1( | |
hidden_states=norm_hidden_states, | |
encoder_hidden_states=norm_encoder_hidden_states, | |
image_rotary_emb=image_rotary_emb, | |
) | |
if fastercache_counter == fastercache_start_step: | |
self.cached_hidden_states = [attn_hidden_states.to(fastercache_device), attn_hidden_states.to(fastercache_device)] | |
self.cached_encoder_hidden_states = [attn_encoder_hidden_states.to(fastercache_device), attn_encoder_hidden_states.to(fastercache_device)] | |
elif fastercache_counter > fastercache_start_step: | |
self.cached_hidden_states[-1].copy_(attn_hidden_states.to(fastercache_device)) | |
self.cached_encoder_hidden_states[-1].copy_(attn_encoder_hidden_states.to(fastercache_device)) | |
else: | |
attn_hidden_states, attn_encoder_hidden_states = self.attn1( | |
hidden_states=norm_hidden_states, | |
encoder_hidden_states=norm_encoder_hidden_states, | |
image_rotary_emb=image_rotary_emb | |
) | |
hidden_states = hidden_states + gate_msa * attn_hidden_states | |
encoder_hidden_states = encoder_hidden_states + enc_gate_msa * attn_encoder_hidden_states | |
# norm & modulate | |
norm_hidden_states, norm_encoder_hidden_states, gate_ff, enc_gate_ff = self.norm2( | |
hidden_states, encoder_hidden_states, temb | |
) | |
# feed-forward | |
norm_hidden_states = torch.cat([norm_encoder_hidden_states, norm_hidden_states], dim=1) | |
ff_output = self.ff(norm_hidden_states) | |
hidden_states = hidden_states + gate_ff * ff_output[:, text_seq_length:] | |
encoder_hidden_states = encoder_hidden_states + enc_gate_ff * ff_output[:, :text_seq_length] | |
return hidden_states, encoder_hidden_states | |
#region Transformer | |
class CogVideoXTransformer3DModel(ModelMixin, ConfigMixin, PeftAdapterMixin): | |
""" | |
A Transformer model for video-like data in [CogVideoX](https://github.com/THUDM/CogVideo). | |
Parameters: | |
num_attention_heads (`int`, defaults to `30`): | |
The number of heads to use for multi-head attention. | |
attention_head_dim (`int`, defaults to `64`): | |
The number of channels in each head. | |
in_channels (`int`, defaults to `16`): | |
The number of channels in the input. | |
out_channels (`int`, *optional*, defaults to `16`): | |
The number of channels in the output. | |
flip_sin_to_cos (`bool`, defaults to `True`): | |
Whether to flip the sin to cos in the time embedding. | |
time_embed_dim (`int`, defaults to `512`): | |
Output dimension of timestep embeddings. | |
text_embed_dim (`int`, defaults to `4096`): | |
Input dimension of text embeddings from the text encoder. | |
num_layers (`int`, defaults to `30`): | |
The number of layers of Transformer blocks to use. | |
dropout (`float`, defaults to `0.0`): | |
The dropout probability to use. | |
attention_bias (`bool`, defaults to `True`): | |
Whether or not to use bias in the attention projection layers. | |
sample_width (`int`, defaults to `90`): | |
The width of the input latents. | |
sample_height (`int`, defaults to `60`): | |
The height of the input latents. | |
sample_frames (`int`, defaults to `49`): | |
The number of frames in the input latents. Note that this parameter was incorrectly initialized to 49 | |
instead of 13 because CogVideoX processed 13 latent frames at once in its default and recommended settings, | |
but cannot be changed to the correct value to ensure backwards compatibility. To create a transformer with | |
K latent frames, the correct value to pass here would be: ((K - 1) * temporal_compression_ratio + 1). | |
patch_size (`int`, defaults to `2`): | |
The size of the patches to use in the patch embedding layer. | |
temporal_compression_ratio (`int`, defaults to `4`): | |
The compression ratio across the temporal dimension. See documentation for `sample_frames`. | |
max_text_seq_length (`int`, defaults to `226`): | |
The maximum sequence length of the input text embeddings. | |
activation_fn (`str`, defaults to `"gelu-approximate"`): | |
Activation function to use in feed-forward. | |
timestep_activation_fn (`str`, defaults to `"silu"`): | |
Activation function to use when generating the timestep embeddings. | |
norm_elementwise_affine (`bool`, defaults to `True`): | |
Whether or not to use elementwise affine in normalization layers. | |
norm_eps (`float`, defaults to `1e-5`): | |
The epsilon value to use in normalization layers. | |
spatial_interpolation_scale (`float`, defaults to `1.875`): | |
Scaling factor to apply in 3D positional embeddings across spatial dimensions. | |
temporal_interpolation_scale (`float`, defaults to `1.0`): | |
Scaling factor to apply in 3D positional embeddings across temporal dimensions. | |
""" | |
_supports_gradient_checkpointing = True | |
def __init__( | |
self, | |
num_attention_heads: int = 30, | |
attention_head_dim: int = 64, | |
in_channels: int = 16, | |
out_channels: Optional[int] = 16, | |
flip_sin_to_cos: bool = True, | |
freq_shift: int = 0, | |
time_embed_dim: int = 512, | |
ofs_embed_dim: Optional[int] = None, | |
text_embed_dim: int = 4096, | |
num_layers: int = 30, | |
dropout: float = 0.0, | |
attention_bias: bool = True, | |
sample_width: int = 90, | |
sample_height: int = 60, | |
sample_frames: int = 49, | |
patch_size: int = 2, | |
patch_size_t: int = None, | |
temporal_compression_ratio: int = 4, | |
max_text_seq_length: int = 226, | |
activation_fn: str = "gelu-approximate", | |
timestep_activation_fn: str = "silu", | |
norm_elementwise_affine: bool = True, | |
norm_eps: float = 1e-5, | |
spatial_interpolation_scale: float = 1.875, | |
temporal_interpolation_scale: float = 1.0, | |
use_rotary_positional_embeddings: bool = False, | |
use_learned_positional_embeddings: bool = False, | |
patch_bias: bool = True, | |
attention_mode: Optional[str] = "sdpa", | |
): | |
super().__init__() | |
inner_dim = num_attention_heads * attention_head_dim | |
if not use_rotary_positional_embeddings and use_learned_positional_embeddings: | |
raise ValueError( | |
"There are no CogVideoX checkpoints available with disable rotary embeddings and learned positional " | |
"embeddings. If you're using a custom model and/or believe this should be supported, please open an " | |
"issue at https://github.com/huggingface/diffusers/issues." | |
) | |
# 1. Patch embedding | |
self.patch_embed = CogVideoXPatchEmbed( | |
patch_size=patch_size, | |
patch_size_t=patch_size_t, | |
in_channels=in_channels, | |
embed_dim=inner_dim, | |
text_embed_dim=text_embed_dim, | |
bias=patch_bias, | |
sample_width=sample_width, | |
sample_height=sample_height, | |
sample_frames=sample_frames, | |
temporal_compression_ratio=temporal_compression_ratio, | |
max_text_seq_length=max_text_seq_length, | |
spatial_interpolation_scale=spatial_interpolation_scale, | |
temporal_interpolation_scale=temporal_interpolation_scale, | |
use_positional_embeddings=not use_rotary_positional_embeddings, | |
use_learned_positional_embeddings=use_learned_positional_embeddings, | |
) | |
self.embedding_dropout = nn.Dropout(dropout) | |
# 2. Time embeddings | |
self.time_proj = Timesteps(inner_dim, flip_sin_to_cos, freq_shift) | |
self.time_embedding = TimestepEmbedding(inner_dim, time_embed_dim, timestep_activation_fn) | |
self.ofs_proj = None | |
self.ofs_embedding = None | |
if ofs_embed_dim: | |
self.ofs_proj = Timesteps(ofs_embed_dim, flip_sin_to_cos, freq_shift) | |
self.ofs_embedding = TimestepEmbedding(ofs_embed_dim, ofs_embed_dim, timestep_activation_fn) # same as time embeddings, for ofs | |
# 3. Define spatio-temporal transformers blocks | |
self.transformer_blocks = nn.ModuleList( | |
[ | |
CogVideoXBlock( | |
dim=inner_dim, | |
num_attention_heads=num_attention_heads, | |
attention_head_dim=attention_head_dim, | |
time_embed_dim=time_embed_dim, | |
dropout=dropout, | |
activation_fn=activation_fn, | |
attention_bias=attention_bias, | |
attention_mode=attention_mode, | |
norm_elementwise_affine=norm_elementwise_affine, | |
norm_eps=norm_eps, | |
) | |
for _ in range(num_layers) | |
] | |
) | |
self.norm_final = nn.LayerNorm(inner_dim, norm_eps, norm_elementwise_affine) | |
# 4. Output blocks | |
self.norm_out = AdaLayerNorm( | |
embedding_dim=time_embed_dim, | |
output_dim=2 * inner_dim, | |
norm_elementwise_affine=norm_elementwise_affine, | |
norm_eps=norm_eps, | |
chunk_dim=1, | |
) | |
if patch_size_t is None: | |
# For CogVideox 1.0 | |
output_dim = patch_size * patch_size * out_channels | |
else: | |
# For CogVideoX 1.5 | |
output_dim = patch_size * patch_size * patch_size_t * out_channels | |
self.proj_out = nn.Linear(inner_dim, output_dim) | |
self.gradient_checkpointing = False | |
self.attention_mode = attention_mode | |
#tora | |
self.fuser_list = None | |
#fastercache | |
self.use_fastercache = False | |
self.fastercache_counter = 0 | |
self.fastercache_start_step = 15 | |
self.fastercache_lf_step = 40 | |
self.fastercache_hf_step = 30 | |
self.fastercache_device = "cuda" | |
self.fastercache_num_blocks_to_cache = len(self.transformer_blocks) | |
#teacache | |
self.use_teacache = False | |
self.teacache_rel_l1_thresh = 0.0 | |
if not self.config.use_rotary_positional_embeddings: | |
#CogVideoX-2B | |
self.teacache_coefficients = [-3.10658903e+01, 2.54732368e+01, -5.92380459e+00, 1.75769064e+00, -3.61568434e-03] | |
else: | |
#CogVideoX-5B | |
self.teacache_coefficients = [-1.53880483e+03, 8.43202495e+02, -1.34363087e+02, 7.97131516e+00, -5.23162339e-02] | |
def _set_gradient_checkpointing(self, module, value=False): | |
self.gradient_checkpointing = value | |
#region forward | |
def forward( | |
self, | |
hidden_states: torch.Tensor, | |
encoder_hidden_states: torch.Tensor, | |
timestep: Union[int, float, torch.LongTensor], | |
timestep_cond: Optional[torch.Tensor] = None, | |
ofs: Optional[Union[int, float, torch.LongTensor]] = None, | |
image_rotary_emb: Optional[Tuple[torch.Tensor, torch.Tensor]] = None, | |
controlnet_states: torch.Tensor = None, | |
controlnet_weights: Optional[Union[float, int, list, np.ndarray, torch.FloatTensor]] = 1.0, | |
video_flow_features: Optional[torch.Tensor] = None, | |
return_dict: bool = True, | |
): | |
batch_size, num_frames, channels, height, width = hidden_states.shape | |
set_num_frames(num_frames) #enhance a video global | |
# 1. Time embedding | |
timesteps = timestep | |
t_emb = self.time_proj(timesteps) | |
# timesteps does not contain any weights and will always return f32 tensors | |
# but time_embedding might actually be running in fp16. so we need to cast here. | |
# there might be better ways to encapsulate this. | |
t_emb = t_emb.to(dtype=hidden_states.dtype) | |
emb = self.time_embedding(t_emb, timestep_cond) | |
if self.ofs_embedding is not None: #1.5 I2V | |
ofs_emb = self.ofs_proj(ofs) | |
ofs_emb = ofs_emb.to(dtype=hidden_states.dtype) | |
ofs_emb = self.ofs_embedding(ofs_emb) | |
emb = emb + ofs_emb | |
# 2. Patch embedding | |
p = self.config.patch_size | |
p_t = self.config.patch_size_t | |
#print("hidden_states before patch_embedding", hidden_states.shape) #torch.Size([2, 4, 16, 60, 90]) | |
hidden_states = self.patch_embed(encoder_hidden_states, hidden_states) | |
#print("hidden_states after patch_embedding", hidden_states.shape) #1.5: torch.Size([2, 2926, 3072]) #1.0: torch.Size([2, 5626, 3072]) | |
hidden_states = self.embedding_dropout(hidden_states) | |
text_seq_length = encoder_hidden_states.shape[1] | |
encoder_hidden_states = hidden_states[:, :text_seq_length] | |
hidden_states = hidden_states[:, text_seq_length:] | |
#print("hidden_states after split", hidden_states.shape) #1.5: torch.Size([2, 2700, 3072]) #1.0: torch.Size([2, 5400, 3072]) | |
if self.use_fastercache: | |
self.fastercache_counter+=1 | |
if self.fastercache_counter >= self.fastercache_start_step + 3 and self.fastercache_counter % 5 !=0: | |
# 3. Transformer blocks | |
for i, block in enumerate(self.transformer_blocks): | |
hidden_states, encoder_hidden_states = block( | |
hidden_states=hidden_states[:1], | |
encoder_hidden_states=encoder_hidden_states[:1], | |
temb=emb[:1], | |
image_rotary_emb=image_rotary_emb, | |
video_flow_feature=video_flow_features[i][:1] if video_flow_features is not None else None, | |
fuser = self.fuser_list[i] if self.fuser_list is not None else None, | |
block_use_fastercache = i <= self.fastercache_num_blocks_to_cache, | |
fastercache_counter = self.fastercache_counter, | |
fastercache_start_step = self.fastercache_start_step, | |
fastercache_device = self.fastercache_device | |
) | |
if (controlnet_states is not None) and (i < len(controlnet_states)): | |
controlnet_states_block = controlnet_states[i] | |
controlnet_block_weight = 1.0 | |
if isinstance(controlnet_weights, (list, np.ndarray)) or torch.is_tensor(controlnet_weights): | |
controlnet_block_weight = controlnet_weights[i] | |
elif isinstance(controlnet_weights, (float, int)): | |
controlnet_block_weight = controlnet_weights | |
hidden_states = hidden_states + controlnet_states_block * controlnet_block_weight | |
if not self.config.use_rotary_positional_embeddings: | |
# CogVideoX-2B | |
hidden_states = self.norm_final(hidden_states) | |
else: | |
# CogVideoX-5B | |
hidden_states = torch.cat([encoder_hidden_states, hidden_states], dim=1) | |
hidden_states = self.norm_final(hidden_states) | |
hidden_states = hidden_states[:, text_seq_length:] | |
# 4. Final block | |
hidden_states = self.norm_out(hidden_states, temb=emb[:1]) | |
hidden_states = self.proj_out(hidden_states) | |
# 5. Unpatchify | |
# Note: we use `-1` instead of `channels`: | |
# - It is okay to `channels` use for CogVideoX-2b and CogVideoX-5b (number of input channels is equal to output channels) | |
# - However, for CogVideoX-5b-I2V also takes concatenated input image latents (number of input channels is twice the output channels) | |
if p_t is None: | |
output = hidden_states.reshape(1, num_frames, height // p, width // p, -1, p, p) | |
output = output.permute(0, 1, 4, 2, 5, 3, 6).flatten(5, 6).flatten(3, 4) | |
else: | |
output = hidden_states.reshape( | |
1, (num_frames + p_t - 1) // p_t, height // p, width // p, -1, p_t, p, p | |
) | |
output = output.permute(0, 1, 5, 4, 2, 6, 3, 7).flatten(6, 7).flatten(4, 5).flatten(1, 2) | |
(bb, tt, cc, hh, ww) = output.shape | |
cond = rearrange(output, "B T C H W -> (B T) C H W", B=bb, C=cc, T=tt, H=hh, W=ww) | |
lf_c, hf_c = fft(cond.float()) | |
#lf_step = 40 | |
#hf_step = 30 | |
if self.fastercache_counter <= self.fastercache_lf_step: | |
self.delta_lf = self.delta_lf * 1.1 | |
if self.fastercache_counter >= self.fastercache_hf_step: | |
self.delta_hf = self.delta_hf * 1.1 | |
new_hf_uc = self.delta_hf + hf_c | |
new_lf_uc = self.delta_lf + lf_c | |
combine_uc = new_lf_uc + new_hf_uc | |
combined_fft = torch.fft.ifftshift(combine_uc) | |
recovered_uncond = torch.fft.ifft2(combined_fft).real | |
recovered_uncond = rearrange(recovered_uncond.to(output.dtype), "(B T) C H W -> B T C H W", B=bb, C=cc, T=tt, H=hh, W=ww) | |
output = torch.cat([output, recovered_uncond]) | |
else: | |
if self.use_teacache: | |
if not hasattr(self, 'accumulated_rel_l1_distance'): | |
should_calc = True | |
self.accumulated_rel_l1_distance = 0 | |
else: | |
self.accumulated_rel_l1_distance += poly1d(self.teacache_coefficients, ((emb-self.previous_modulated_input).abs().mean() / self.previous_modulated_input.abs().mean())) | |
if self.accumulated_rel_l1_distance < self.teacache_rel_l1_thresh: | |
should_calc = False | |
self.teacache_counter += 1 | |
else: | |
should_calc = True | |
self.accumulated_rel_l1_distance = 0 | |
#print("self.accumulated_rel_l1_distance ", self.accumulated_rel_l1_distance) | |
self.previous_modulated_input = emb | |
if not should_calc: | |
hidden_states += self.previous_residual | |
encoder_hidden_states += self.previous_residual_encoder | |
if not self.use_teacache or (self.use_teacache and should_calc): | |
if self.use_teacache: | |
ori_hidden_states = hidden_states.clone() | |
ori_encoder_hidden_states = encoder_hidden_states.clone() | |
for i, block in enumerate(self.transformer_blocks): | |
hidden_states, encoder_hidden_states = block( | |
hidden_states=hidden_states, | |
encoder_hidden_states=encoder_hidden_states, | |
temb=emb, | |
image_rotary_emb=image_rotary_emb, | |
video_flow_feature=video_flow_features[i] if video_flow_features is not None else None, | |
fuser = self.fuser_list[i] if self.fuser_list is not None else None, | |
block_use_fastercache = i <= self.fastercache_num_blocks_to_cache, | |
fastercache_counter = self.fastercache_counter, | |
fastercache_start_step = self.fastercache_start_step, | |
fastercache_device = self.fastercache_device | |
) | |
#controlnet | |
if (controlnet_states is not None) and (i < len(controlnet_states)): | |
controlnet_states_block = controlnet_states[i] | |
controlnet_block_weight = 1.0 | |
if isinstance(controlnet_weights, (list, np.ndarray)) or torch.is_tensor(controlnet_weights): | |
controlnet_block_weight = controlnet_weights[i] | |
print(controlnet_block_weight) | |
elif isinstance(controlnet_weights, (float, int)): | |
controlnet_block_weight = controlnet_weights | |
hidden_states = hidden_states + controlnet_states_block * controlnet_block_weight | |
if self.use_teacache: | |
self.previous_residual = hidden_states - ori_hidden_states | |
self.previous_residual_encoder = encoder_hidden_states - ori_encoder_hidden_states | |
if not self.config.use_rotary_positional_embeddings: | |
# CogVideoX-2B | |
hidden_states = self.norm_final(hidden_states) | |
else: | |
# CogVideoX-5B | |
hidden_states = torch.cat([encoder_hidden_states, hidden_states], dim=1) | |
hidden_states = self.norm_final(hidden_states) | |
hidden_states = hidden_states[:, text_seq_length:] | |
# 4. Final block | |
hidden_states = self.norm_out(hidden_states, temb=emb) | |
hidden_states = self.proj_out(hidden_states) | |
# 5. Unpatchify | |
# Note: we use `-1` instead of `channels`: | |
# - It is okay to `channels` use for CogVideoX-2b and CogVideoX-5b (number of input channels is equal to output channels) | |
# - However, for CogVideoX-5b-I2V also takes concatenated input image latents (number of input channels is twice the output channels) | |
if p_t is None: | |
output = hidden_states.reshape(batch_size, num_frames, height // p, width // p, -1, p, p) | |
output = output.permute(0, 1, 4, 2, 5, 3, 6).flatten(5, 6).flatten(3, 4) | |
else: | |
output = hidden_states.reshape( | |
batch_size, (num_frames + p_t - 1) // p_t, height // p, width // p, -1, p_t, p, p | |
) | |
output = output.permute(0, 1, 5, 4, 2, 6, 3, 7).flatten(6, 7).flatten(4, 5).flatten(1, 2) | |
if self.fastercache_counter >= self.fastercache_start_step + 1: | |
(bb, tt, cc, hh, ww) = output.shape | |
cond = rearrange(output[0:1].float(), "B T C H W -> (B T) C H W", B=bb//2, C=cc, T=tt, H=hh, W=ww) | |
uncond = rearrange(output[1:2].float(), "B T C H W -> (B T) C H W", B=bb//2, C=cc, T=tt, H=hh, W=ww) | |
lf_c, hf_c = fft(cond) | |
lf_uc, hf_uc = fft(uncond) | |
self.delta_lf = lf_uc - lf_c | |
self.delta_hf = hf_uc - hf_c | |
if not return_dict: | |
return (output,) | |
return Transformer2DModelOutput(sample=output) | |