Spaces:
Running
on
Zero
Running
on
Zero
File size: 37,506 Bytes
25bb7a0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 |
# Copyright 2024 The CogVideoX team, Tsinghua University & ZhipuAI and The HuggingFace Team.
# All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import Any, Dict, Optional, Tuple, Union
import torch
from torch import nn
import torch.nn.functional as F
import numpy as np
from einops import rearrange
from diffusers.configuration_utils import ConfigMixin, register_to_config
from diffusers.utils import logging
from diffusers.utils.torch_utils import maybe_allow_in_graph
from diffusers.models.attention import Attention, FeedForward
from diffusers.models.attention_processor import AttentionProcessor
from diffusers.models.embeddings import TimestepEmbedding, Timesteps
from diffusers.models.modeling_outputs import Transformer2DModelOutput
from diffusers.models.modeling_utils import ModelMixin
from diffusers.models.normalization import AdaLayerNorm, CogVideoXLayerNormZero
from diffusers.loaders import PeftAdapterMixin
from diffusers.models.embeddings import apply_rotary_emb
from .embeddings import CogVideoXPatchEmbed
from .enhance_a_video.enhance import get_feta_scores
from .enhance_a_video.globals import is_enhance_enabled, set_num_frames
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
try:
from sageattention import sageattn
SAGEATTN_IS_AVAILABLE = True
except:
SAGEATTN_IS_AVAILABLE = False
from comfy.ldm.modules.attention import optimized_attention
def set_attention_func(attention_mode, heads):
if attention_mode == "sdpa" or attention_mode == "fused_sdpa":
def func(q, k, v, is_causal=False, attn_mask=None):
return F.scaled_dot_product_attention(q, k, v, attn_mask=attn_mask, dropout_p=0.0, is_causal=is_causal)
return func
elif attention_mode == "comfy":
def func(q, k, v, is_causal=False, attn_mask=None):
return optimized_attention(q, k, v, mask=attn_mask, heads=heads, skip_reshape=True)
return func
elif attention_mode == "sageattn" or attention_mode == "fused_sageattn":
@torch.compiler.disable()
def func(q, k, v, is_causal=False, attn_mask=None):
return sageattn(q.to(v), k.to(v), v, is_causal=is_causal, attn_mask=attn_mask)
return func
elif attention_mode == "sageattn_qk_int8_pv_fp16_cuda":
from sageattention import sageattn_qk_int8_pv_fp16_cuda
@torch.compiler.disable()
def func(q, k, v, is_causal=False, attn_mask=None):
return sageattn_qk_int8_pv_fp16_cuda(q.to(v), k.to(v), v, is_causal=is_causal, attn_mask=attn_mask, pv_accum_dtype="fp32")
return func
elif attention_mode == "sageattn_qk_int8_pv_fp16_triton":
from sageattention import sageattn_qk_int8_pv_fp16_triton
@torch.compiler.disable()
def func(q, k, v, is_causal=False, attn_mask=None):
return sageattn_qk_int8_pv_fp16_triton(q.to(v), k.to(v), v, is_causal=is_causal, attn_mask=attn_mask)
return func
elif attention_mode == "sageattn_qk_int8_pv_fp8_cuda":
from sageattention import sageattn_qk_int8_pv_fp8_cuda
@torch.compiler.disable()
def func(q, k, v, is_causal=False, attn_mask=None):
return sageattn_qk_int8_pv_fp8_cuda(q.to(v), k.to(v), v, is_causal=is_causal, attn_mask=attn_mask, pv_accum_dtype="fp32+fp32")
return func
#for fastercache
def fft(tensor):
tensor_fft = torch.fft.fft2(tensor)
tensor_fft_shifted = torch.fft.fftshift(tensor_fft)
B, C, H, W = tensor.size()
radius = min(H, W) // 5
Y, X = torch.meshgrid(torch.arange(H), torch.arange(W))
center_x, center_y = W // 2, H // 2
mask = (X - center_x) ** 2 + (Y - center_y) ** 2 <= radius ** 2
low_freq_mask = mask.unsqueeze(0).unsqueeze(0).to(tensor.device)
high_freq_mask = ~low_freq_mask
low_freq_fft = tensor_fft_shifted * low_freq_mask
high_freq_fft = tensor_fft_shifted * high_freq_mask
return low_freq_fft, high_freq_fft
#for teacache
def poly1d(coefficients, x):
result = torch.zeros_like(x)
for i, coeff in enumerate(coefficients):
result += coeff * (x ** (len(coefficients) - 1 - i))
return result.abs()
#region Attention
class CogVideoXAttnProcessor2_0:
r"""
Processor for implementing scaled dot-product attention for the CogVideoX model. It applies a rotary embedding on
query and key vectors, but does not include spatial normalization.
"""
def __init__(self, attn_func, attention_mode: Optional[str] = None):
if not hasattr(F, "scaled_dot_product_attention"):
raise ImportError("CogVideoXAttnProcessor requires PyTorch 2.0, to use it, please upgrade PyTorch to 2.0.")
self.attention_mode = attention_mode
self.attn_func = attn_func
def __call__(
self,
attn: Attention,
hidden_states: torch.Tensor,
encoder_hidden_states: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
image_rotary_emb: Optional[torch.Tensor] = None,
) -> torch.Tensor:
text_seq_length = encoder_hidden_states.size(1)
hidden_states = torch.cat([encoder_hidden_states, hidden_states], dim=1)
batch_size, sequence_length, _ = (
hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape
)
if attention_mask is not None:
attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size)
attention_mask = attention_mask.view(batch_size, attn.heads, -1, attention_mask.shape[-1])
if attn.to_q.weight.dtype == torch.float16 or attn.to_q.weight.dtype == torch.bfloat16:
hidden_states = hidden_states.to(attn.to_q.weight.dtype)
if not "fused" in self.attention_mode:
query = attn.to_q(hidden_states)
key = attn.to_k(hidden_states)
value = attn.to_v(hidden_states)
else:
qkv = attn.to_qkv(hidden_states)
split_size = qkv.shape[-1] // 3
query, key, value = torch.split(qkv, split_size, dim=-1)
inner_dim = key.shape[-1]
head_dim = inner_dim // attn.heads
query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
if attn.norm_q is not None:
query = attn.norm_q(query)
if attn.norm_k is not None:
key = attn.norm_k(key)
# Apply RoPE if needed
if image_rotary_emb is not None:
query[:, :, text_seq_length:] = apply_rotary_emb(query[:, :, text_seq_length:], image_rotary_emb)
if not attn.is_cross_attention:
key[:, :, text_seq_length:] = apply_rotary_emb(key[:, :, text_seq_length:], image_rotary_emb)
#feta
if is_enhance_enabled():
feta_scores = get_feta_scores(attn, query, key, head_dim, text_seq_length)
hidden_states = self.attn_func(query, key, value, attn_mask=attention_mask, is_causal=False)
if self.attention_mode != "comfy":
hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim)
# linear proj
hidden_states = attn.to_out[0](hidden_states)
# dropout
hidden_states = attn.to_out[1](hidden_states)
encoder_hidden_states, hidden_states = hidden_states.split(
[text_seq_length, hidden_states.size(1) - text_seq_length], dim=1
)
if is_enhance_enabled():
hidden_states *= feta_scores
return hidden_states, encoder_hidden_states
#region Blocks
@maybe_allow_in_graph
class CogVideoXBlock(nn.Module):
r"""
Transformer block used in [CogVideoX](https://github.com/THUDM/CogVideo) model.
Parameters:
dim (`int`):
The number of channels in the input and output.
num_attention_heads (`int`):
The number of heads to use for multi-head attention.
attention_head_dim (`int`):
The number of channels in each head.
time_embed_dim (`int`):
The number of channels in timestep embedding.
dropout (`float`, defaults to `0.0`):
The dropout probability to use.
activation_fn (`str`, defaults to `"gelu-approximate"`):
Activation function to be used in feed-forward.
attention_bias (`bool`, defaults to `False`):
Whether or not to use bias in attention projection layers.
qk_norm (`bool`, defaults to `True`):
Whether or not to use normalization after query and key projections in Attention.
norm_elementwise_affine (`bool`, defaults to `True`):
Whether to use learnable elementwise affine parameters for normalization.
norm_eps (`float`, defaults to `1e-5`):
Epsilon value for normalization layers.
final_dropout (`bool` defaults to `False`):
Whether to apply a final dropout after the last feed-forward layer.
ff_inner_dim (`int`, *optional*, defaults to `None`):
Custom hidden dimension of Feed-forward layer. If not provided, `4 * dim` is used.
ff_bias (`bool`, defaults to `True`):
Whether or not to use bias in Feed-forward layer.
attention_out_bias (`bool`, defaults to `True`):
Whether or not to use bias in Attention output projection layer.
"""
def __init__(
self,
dim: int,
num_attention_heads: int,
attention_head_dim: int,
time_embed_dim: int,
dropout: float = 0.0,
activation_fn: str = "gelu-approximate",
attention_bias: bool = False,
qk_norm: bool = True,
norm_elementwise_affine: bool = True,
norm_eps: float = 1e-5,
final_dropout: bool = True,
ff_inner_dim: Optional[int] = None,
ff_bias: bool = True,
attention_out_bias: bool = True,
attention_mode: Optional[str] = "sdpa",
):
super().__init__()
# 1. Self Attention
self.norm1 = CogVideoXLayerNormZero(time_embed_dim, dim, norm_elementwise_affine, norm_eps, bias=True)
attn_func = set_attention_func(attention_mode, num_attention_heads)
self.attn1 = Attention(
query_dim=dim,
dim_head=attention_head_dim,
heads=num_attention_heads,
qk_norm="layer_norm" if qk_norm else None,
eps=1e-6,
bias=attention_bias,
out_bias=attention_out_bias,
processor=CogVideoXAttnProcessor2_0(attn_func, attention_mode=attention_mode),
)
# 2. Feed Forward
self.norm2 = CogVideoXLayerNormZero(time_embed_dim, dim, norm_elementwise_affine, norm_eps, bias=True)
self.ff = FeedForward(
dim,
dropout=dropout,
activation_fn=activation_fn,
final_dropout=final_dropout,
inner_dim=ff_inner_dim,
bias=ff_bias,
)
self.cached_hidden_states = []
self.cached_encoder_hidden_states = []
def forward(
self,
hidden_states: torch.Tensor,
encoder_hidden_states: torch.Tensor,
temb: torch.Tensor,
image_rotary_emb: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,
video_flow_feature: Optional[torch.Tensor] = None,
fuser=None,
block_use_fastercache=False,
fastercache_counter=0,
fastercache_start_step=15,
fastercache_device="cuda:0",
) -> torch.Tensor:
#print("hidden_states in block: ", hidden_states.shape) #1.5: torch.Size([2, 3200, 3072]) 10.: torch.Size([2, 6400, 3072])
text_seq_length = encoder_hidden_states.size(1)
# norm & modulate
norm_hidden_states, norm_encoder_hidden_states, gate_msa, enc_gate_msa = self.norm1(
hidden_states, encoder_hidden_states, temb
)
#print("norm_hidden_states in block: ", norm_hidden_states.shape) #torch.Size([2, 3200, 3072])
# Tora Motion-guidance Fuser
if video_flow_feature is not None:
H, W = video_flow_feature.shape[-2:]
T = norm_hidden_states.shape[1] // H // W
h = rearrange(norm_hidden_states, "B (T H W) C -> (B T) C H W", H=H, W=W)
h = fuser(h, video_flow_feature.to(h), T=T)
norm_hidden_states = rearrange(h, "(B T) C H W -> B (T H W) C", T=T)
del h, fuser
#region fastercache
if block_use_fastercache:
B = norm_hidden_states.shape[0]
if fastercache_counter >= fastercache_start_step + 3 and fastercache_counter%3!=0 and self.cached_hidden_states[-1].shape[0] >= B:
attn_hidden_states = (
self.cached_hidden_states[1][:B] +
(self.cached_hidden_states[1][:B] - self.cached_hidden_states[0][:B])
* 0.3
).to(norm_hidden_states.device, non_blocking=True)
attn_encoder_hidden_states = (
self.cached_encoder_hidden_states[1][:B] +
(self.cached_encoder_hidden_states[1][:B] - self.cached_encoder_hidden_states[0][:B])
* 0.3
).to(norm_hidden_states.device, non_blocking=True)
else:
attn_hidden_states, attn_encoder_hidden_states = self.attn1(
hidden_states=norm_hidden_states,
encoder_hidden_states=norm_encoder_hidden_states,
image_rotary_emb=image_rotary_emb,
)
if fastercache_counter == fastercache_start_step:
self.cached_hidden_states = [attn_hidden_states.to(fastercache_device), attn_hidden_states.to(fastercache_device)]
self.cached_encoder_hidden_states = [attn_encoder_hidden_states.to(fastercache_device), attn_encoder_hidden_states.to(fastercache_device)]
elif fastercache_counter > fastercache_start_step:
self.cached_hidden_states[-1].copy_(attn_hidden_states.to(fastercache_device))
self.cached_encoder_hidden_states[-1].copy_(attn_encoder_hidden_states.to(fastercache_device))
else:
attn_hidden_states, attn_encoder_hidden_states = self.attn1(
hidden_states=norm_hidden_states,
encoder_hidden_states=norm_encoder_hidden_states,
image_rotary_emb=image_rotary_emb
)
hidden_states = hidden_states + gate_msa * attn_hidden_states
encoder_hidden_states = encoder_hidden_states + enc_gate_msa * attn_encoder_hidden_states
# norm & modulate
norm_hidden_states, norm_encoder_hidden_states, gate_ff, enc_gate_ff = self.norm2(
hidden_states, encoder_hidden_states, temb
)
# feed-forward
norm_hidden_states = torch.cat([norm_encoder_hidden_states, norm_hidden_states], dim=1)
ff_output = self.ff(norm_hidden_states)
hidden_states = hidden_states + gate_ff * ff_output[:, text_seq_length:]
encoder_hidden_states = encoder_hidden_states + enc_gate_ff * ff_output[:, :text_seq_length]
return hidden_states, encoder_hidden_states
#region Transformer
class CogVideoXTransformer3DModel(ModelMixin, ConfigMixin, PeftAdapterMixin):
"""
A Transformer model for video-like data in [CogVideoX](https://github.com/THUDM/CogVideo).
Parameters:
num_attention_heads (`int`, defaults to `30`):
The number of heads to use for multi-head attention.
attention_head_dim (`int`, defaults to `64`):
The number of channels in each head.
in_channels (`int`, defaults to `16`):
The number of channels in the input.
out_channels (`int`, *optional*, defaults to `16`):
The number of channels in the output.
flip_sin_to_cos (`bool`, defaults to `True`):
Whether to flip the sin to cos in the time embedding.
time_embed_dim (`int`, defaults to `512`):
Output dimension of timestep embeddings.
text_embed_dim (`int`, defaults to `4096`):
Input dimension of text embeddings from the text encoder.
num_layers (`int`, defaults to `30`):
The number of layers of Transformer blocks to use.
dropout (`float`, defaults to `0.0`):
The dropout probability to use.
attention_bias (`bool`, defaults to `True`):
Whether or not to use bias in the attention projection layers.
sample_width (`int`, defaults to `90`):
The width of the input latents.
sample_height (`int`, defaults to `60`):
The height of the input latents.
sample_frames (`int`, defaults to `49`):
The number of frames in the input latents. Note that this parameter was incorrectly initialized to 49
instead of 13 because CogVideoX processed 13 latent frames at once in its default and recommended settings,
but cannot be changed to the correct value to ensure backwards compatibility. To create a transformer with
K latent frames, the correct value to pass here would be: ((K - 1) * temporal_compression_ratio + 1).
patch_size (`int`, defaults to `2`):
The size of the patches to use in the patch embedding layer.
temporal_compression_ratio (`int`, defaults to `4`):
The compression ratio across the temporal dimension. See documentation for `sample_frames`.
max_text_seq_length (`int`, defaults to `226`):
The maximum sequence length of the input text embeddings.
activation_fn (`str`, defaults to `"gelu-approximate"`):
Activation function to use in feed-forward.
timestep_activation_fn (`str`, defaults to `"silu"`):
Activation function to use when generating the timestep embeddings.
norm_elementwise_affine (`bool`, defaults to `True`):
Whether or not to use elementwise affine in normalization layers.
norm_eps (`float`, defaults to `1e-5`):
The epsilon value to use in normalization layers.
spatial_interpolation_scale (`float`, defaults to `1.875`):
Scaling factor to apply in 3D positional embeddings across spatial dimensions.
temporal_interpolation_scale (`float`, defaults to `1.0`):
Scaling factor to apply in 3D positional embeddings across temporal dimensions.
"""
_supports_gradient_checkpointing = True
@register_to_config
def __init__(
self,
num_attention_heads: int = 30,
attention_head_dim: int = 64,
in_channels: int = 16,
out_channels: Optional[int] = 16,
flip_sin_to_cos: bool = True,
freq_shift: int = 0,
time_embed_dim: int = 512,
ofs_embed_dim: Optional[int] = None,
text_embed_dim: int = 4096,
num_layers: int = 30,
dropout: float = 0.0,
attention_bias: bool = True,
sample_width: int = 90,
sample_height: int = 60,
sample_frames: int = 49,
patch_size: int = 2,
patch_size_t: int = None,
temporal_compression_ratio: int = 4,
max_text_seq_length: int = 226,
activation_fn: str = "gelu-approximate",
timestep_activation_fn: str = "silu",
norm_elementwise_affine: bool = True,
norm_eps: float = 1e-5,
spatial_interpolation_scale: float = 1.875,
temporal_interpolation_scale: float = 1.0,
use_rotary_positional_embeddings: bool = False,
use_learned_positional_embeddings: bool = False,
patch_bias: bool = True,
attention_mode: Optional[str] = "sdpa",
):
super().__init__()
inner_dim = num_attention_heads * attention_head_dim
if not use_rotary_positional_embeddings and use_learned_positional_embeddings:
raise ValueError(
"There are no CogVideoX checkpoints available with disable rotary embeddings and learned positional "
"embeddings. If you're using a custom model and/or believe this should be supported, please open an "
"issue at https://github.com/huggingface/diffusers/issues."
)
# 1. Patch embedding
self.patch_embed = CogVideoXPatchEmbed(
patch_size=patch_size,
patch_size_t=patch_size_t,
in_channels=in_channels,
embed_dim=inner_dim,
text_embed_dim=text_embed_dim,
bias=patch_bias,
sample_width=sample_width,
sample_height=sample_height,
sample_frames=sample_frames,
temporal_compression_ratio=temporal_compression_ratio,
max_text_seq_length=max_text_seq_length,
spatial_interpolation_scale=spatial_interpolation_scale,
temporal_interpolation_scale=temporal_interpolation_scale,
use_positional_embeddings=not use_rotary_positional_embeddings,
use_learned_positional_embeddings=use_learned_positional_embeddings,
)
self.embedding_dropout = nn.Dropout(dropout)
# 2. Time embeddings
self.time_proj = Timesteps(inner_dim, flip_sin_to_cos, freq_shift)
self.time_embedding = TimestepEmbedding(inner_dim, time_embed_dim, timestep_activation_fn)
self.ofs_proj = None
self.ofs_embedding = None
if ofs_embed_dim:
self.ofs_proj = Timesteps(ofs_embed_dim, flip_sin_to_cos, freq_shift)
self.ofs_embedding = TimestepEmbedding(ofs_embed_dim, ofs_embed_dim, timestep_activation_fn) # same as time embeddings, for ofs
# 3. Define spatio-temporal transformers blocks
self.transformer_blocks = nn.ModuleList(
[
CogVideoXBlock(
dim=inner_dim,
num_attention_heads=num_attention_heads,
attention_head_dim=attention_head_dim,
time_embed_dim=time_embed_dim,
dropout=dropout,
activation_fn=activation_fn,
attention_bias=attention_bias,
attention_mode=attention_mode,
norm_elementwise_affine=norm_elementwise_affine,
norm_eps=norm_eps,
)
for _ in range(num_layers)
]
)
self.norm_final = nn.LayerNorm(inner_dim, norm_eps, norm_elementwise_affine)
# 4. Output blocks
self.norm_out = AdaLayerNorm(
embedding_dim=time_embed_dim,
output_dim=2 * inner_dim,
norm_elementwise_affine=norm_elementwise_affine,
norm_eps=norm_eps,
chunk_dim=1,
)
if patch_size_t is None:
# For CogVideox 1.0
output_dim = patch_size * patch_size * out_channels
else:
# For CogVideoX 1.5
output_dim = patch_size * patch_size * patch_size_t * out_channels
self.proj_out = nn.Linear(inner_dim, output_dim)
self.gradient_checkpointing = False
self.attention_mode = attention_mode
#tora
self.fuser_list = None
#fastercache
self.use_fastercache = False
self.fastercache_counter = 0
self.fastercache_start_step = 15
self.fastercache_lf_step = 40
self.fastercache_hf_step = 30
self.fastercache_device = "cuda"
self.fastercache_num_blocks_to_cache = len(self.transformer_blocks)
#teacache
self.use_teacache = False
self.teacache_rel_l1_thresh = 0.0
if not self.config.use_rotary_positional_embeddings:
#CogVideoX-2B
self.teacache_coefficients = [-3.10658903e+01, 2.54732368e+01, -5.92380459e+00, 1.75769064e+00, -3.61568434e-03]
else:
#CogVideoX-5B
self.teacache_coefficients = [-1.53880483e+03, 8.43202495e+02, -1.34363087e+02, 7.97131516e+00, -5.23162339e-02]
def _set_gradient_checkpointing(self, module, value=False):
self.gradient_checkpointing = value
#region forward
def forward(
self,
hidden_states: torch.Tensor,
encoder_hidden_states: torch.Tensor,
timestep: Union[int, float, torch.LongTensor],
timestep_cond: Optional[torch.Tensor] = None,
ofs: Optional[Union[int, float, torch.LongTensor]] = None,
image_rotary_emb: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,
controlnet_states: torch.Tensor = None,
controlnet_weights: Optional[Union[float, int, list, np.ndarray, torch.FloatTensor]] = 1.0,
video_flow_features: Optional[torch.Tensor] = None,
return_dict: bool = True,
):
batch_size, num_frames, channels, height, width = hidden_states.shape
set_num_frames(num_frames) #enhance a video global
# 1. Time embedding
timesteps = timestep
t_emb = self.time_proj(timesteps)
# timesteps does not contain any weights and will always return f32 tensors
# but time_embedding might actually be running in fp16. so we need to cast here.
# there might be better ways to encapsulate this.
t_emb = t_emb.to(dtype=hidden_states.dtype)
emb = self.time_embedding(t_emb, timestep_cond)
if self.ofs_embedding is not None: #1.5 I2V
ofs_emb = self.ofs_proj(ofs)
ofs_emb = ofs_emb.to(dtype=hidden_states.dtype)
ofs_emb = self.ofs_embedding(ofs_emb)
emb = emb + ofs_emb
# 2. Patch embedding
p = self.config.patch_size
p_t = self.config.patch_size_t
#print("hidden_states before patch_embedding", hidden_states.shape) #torch.Size([2, 4, 16, 60, 90])
hidden_states = self.patch_embed(encoder_hidden_states, hidden_states)
#print("hidden_states after patch_embedding", hidden_states.shape) #1.5: torch.Size([2, 2926, 3072]) #1.0: torch.Size([2, 5626, 3072])
hidden_states = self.embedding_dropout(hidden_states)
text_seq_length = encoder_hidden_states.shape[1]
encoder_hidden_states = hidden_states[:, :text_seq_length]
hidden_states = hidden_states[:, text_seq_length:]
#print("hidden_states after split", hidden_states.shape) #1.5: torch.Size([2, 2700, 3072]) #1.0: torch.Size([2, 5400, 3072])
if self.use_fastercache:
self.fastercache_counter+=1
if self.fastercache_counter >= self.fastercache_start_step + 3 and self.fastercache_counter % 5 !=0:
# 3. Transformer blocks
for i, block in enumerate(self.transformer_blocks):
hidden_states, encoder_hidden_states = block(
hidden_states=hidden_states[:1],
encoder_hidden_states=encoder_hidden_states[:1],
temb=emb[:1],
image_rotary_emb=image_rotary_emb,
video_flow_feature=video_flow_features[i][:1] if video_flow_features is not None else None,
fuser = self.fuser_list[i] if self.fuser_list is not None else None,
block_use_fastercache = i <= self.fastercache_num_blocks_to_cache,
fastercache_counter = self.fastercache_counter,
fastercache_start_step = self.fastercache_start_step,
fastercache_device = self.fastercache_device
)
if (controlnet_states is not None) and (i < len(controlnet_states)):
controlnet_states_block = controlnet_states[i]
controlnet_block_weight = 1.0
if isinstance(controlnet_weights, (list, np.ndarray)) or torch.is_tensor(controlnet_weights):
controlnet_block_weight = controlnet_weights[i]
elif isinstance(controlnet_weights, (float, int)):
controlnet_block_weight = controlnet_weights
hidden_states = hidden_states + controlnet_states_block * controlnet_block_weight
if not self.config.use_rotary_positional_embeddings:
# CogVideoX-2B
hidden_states = self.norm_final(hidden_states)
else:
# CogVideoX-5B
hidden_states = torch.cat([encoder_hidden_states, hidden_states], dim=1)
hidden_states = self.norm_final(hidden_states)
hidden_states = hidden_states[:, text_seq_length:]
# 4. Final block
hidden_states = self.norm_out(hidden_states, temb=emb[:1])
hidden_states = self.proj_out(hidden_states)
# 5. Unpatchify
# Note: we use `-1` instead of `channels`:
# - It is okay to `channels` use for CogVideoX-2b and CogVideoX-5b (number of input channels is equal to output channels)
# - However, for CogVideoX-5b-I2V also takes concatenated input image latents (number of input channels is twice the output channels)
if p_t is None:
output = hidden_states.reshape(1, num_frames, height // p, width // p, -1, p, p)
output = output.permute(0, 1, 4, 2, 5, 3, 6).flatten(5, 6).flatten(3, 4)
else:
output = hidden_states.reshape(
1, (num_frames + p_t - 1) // p_t, height // p, width // p, -1, p_t, p, p
)
output = output.permute(0, 1, 5, 4, 2, 6, 3, 7).flatten(6, 7).flatten(4, 5).flatten(1, 2)
(bb, tt, cc, hh, ww) = output.shape
cond = rearrange(output, "B T C H W -> (B T) C H W", B=bb, C=cc, T=tt, H=hh, W=ww)
lf_c, hf_c = fft(cond.float())
#lf_step = 40
#hf_step = 30
if self.fastercache_counter <= self.fastercache_lf_step:
self.delta_lf = self.delta_lf * 1.1
if self.fastercache_counter >= self.fastercache_hf_step:
self.delta_hf = self.delta_hf * 1.1
new_hf_uc = self.delta_hf + hf_c
new_lf_uc = self.delta_lf + lf_c
combine_uc = new_lf_uc + new_hf_uc
combined_fft = torch.fft.ifftshift(combine_uc)
recovered_uncond = torch.fft.ifft2(combined_fft).real
recovered_uncond = rearrange(recovered_uncond.to(output.dtype), "(B T) C H W -> B T C H W", B=bb, C=cc, T=tt, H=hh, W=ww)
output = torch.cat([output, recovered_uncond])
else:
if self.use_teacache:
if not hasattr(self, 'accumulated_rel_l1_distance'):
should_calc = True
self.accumulated_rel_l1_distance = 0
else:
self.accumulated_rel_l1_distance += poly1d(self.teacache_coefficients, ((emb-self.previous_modulated_input).abs().mean() / self.previous_modulated_input.abs().mean()))
if self.accumulated_rel_l1_distance < self.teacache_rel_l1_thresh:
should_calc = False
self.teacache_counter += 1
else:
should_calc = True
self.accumulated_rel_l1_distance = 0
#print("self.accumulated_rel_l1_distance ", self.accumulated_rel_l1_distance)
self.previous_modulated_input = emb
if not should_calc:
hidden_states += self.previous_residual
encoder_hidden_states += self.previous_residual_encoder
if not self.use_teacache or (self.use_teacache and should_calc):
if self.use_teacache:
ori_hidden_states = hidden_states.clone()
ori_encoder_hidden_states = encoder_hidden_states.clone()
for i, block in enumerate(self.transformer_blocks):
hidden_states, encoder_hidden_states = block(
hidden_states=hidden_states,
encoder_hidden_states=encoder_hidden_states,
temb=emb,
image_rotary_emb=image_rotary_emb,
video_flow_feature=video_flow_features[i] if video_flow_features is not None else None,
fuser = self.fuser_list[i] if self.fuser_list is not None else None,
block_use_fastercache = i <= self.fastercache_num_blocks_to_cache,
fastercache_counter = self.fastercache_counter,
fastercache_start_step = self.fastercache_start_step,
fastercache_device = self.fastercache_device
)
#controlnet
if (controlnet_states is not None) and (i < len(controlnet_states)):
controlnet_states_block = controlnet_states[i]
controlnet_block_weight = 1.0
if isinstance(controlnet_weights, (list, np.ndarray)) or torch.is_tensor(controlnet_weights):
controlnet_block_weight = controlnet_weights[i]
print(controlnet_block_weight)
elif isinstance(controlnet_weights, (float, int)):
controlnet_block_weight = controlnet_weights
hidden_states = hidden_states + controlnet_states_block * controlnet_block_weight
if self.use_teacache:
self.previous_residual = hidden_states - ori_hidden_states
self.previous_residual_encoder = encoder_hidden_states - ori_encoder_hidden_states
if not self.config.use_rotary_positional_embeddings:
# CogVideoX-2B
hidden_states = self.norm_final(hidden_states)
else:
# CogVideoX-5B
hidden_states = torch.cat([encoder_hidden_states, hidden_states], dim=1)
hidden_states = self.norm_final(hidden_states)
hidden_states = hidden_states[:, text_seq_length:]
# 4. Final block
hidden_states = self.norm_out(hidden_states, temb=emb)
hidden_states = self.proj_out(hidden_states)
# 5. Unpatchify
# Note: we use `-1` instead of `channels`:
# - It is okay to `channels` use for CogVideoX-2b and CogVideoX-5b (number of input channels is equal to output channels)
# - However, for CogVideoX-5b-I2V also takes concatenated input image latents (number of input channels is twice the output channels)
if p_t is None:
output = hidden_states.reshape(batch_size, num_frames, height // p, width // p, -1, p, p)
output = output.permute(0, 1, 4, 2, 5, 3, 6).flatten(5, 6).flatten(3, 4)
else:
output = hidden_states.reshape(
batch_size, (num_frames + p_t - 1) // p_t, height // p, width // p, -1, p_t, p, p
)
output = output.permute(0, 1, 5, 4, 2, 6, 3, 7).flatten(6, 7).flatten(4, 5).flatten(1, 2)
if self.fastercache_counter >= self.fastercache_start_step + 1:
(bb, tt, cc, hh, ww) = output.shape
cond = rearrange(output[0:1].float(), "B T C H W -> (B T) C H W", B=bb//2, C=cc, T=tt, H=hh, W=ww)
uncond = rearrange(output[1:2].float(), "B T C H W -> (B T) C H W", B=bb//2, C=cc, T=tt, H=hh, W=ww)
lf_c, hf_c = fft(cond)
lf_uc, hf_uc = fft(uncond)
self.delta_lf = lf_uc - lf_c
self.delta_hf = hf_uc - hf_c
if not return_dict:
return (output,)
return Transformer2DModelOutput(sample=output)
|