# Copyright 2024 The CogVideoX team, Tsinghua University & ZhipuAI and The HuggingFace Team. # All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import Any, Dict, Optional, Tuple, Union import torch from torch import nn import torch.nn.functional as F import numpy as np from einops import rearrange from diffusers.configuration_utils import ConfigMixin, register_to_config from diffusers.utils import logging from diffusers.utils.torch_utils import maybe_allow_in_graph from diffusers.models.attention import Attention, FeedForward from diffusers.models.attention_processor import AttentionProcessor from diffusers.models.embeddings import TimestepEmbedding, Timesteps from diffusers.models.modeling_outputs import Transformer2DModelOutput from diffusers.models.modeling_utils import ModelMixin from diffusers.models.normalization import AdaLayerNorm, CogVideoXLayerNormZero from diffusers.loaders import PeftAdapterMixin from diffusers.models.embeddings import apply_rotary_emb from .embeddings import CogVideoXPatchEmbed from .enhance_a_video.enhance import get_feta_scores from .enhance_a_video.globals import is_enhance_enabled, set_num_frames logger = logging.get_logger(__name__) # pylint: disable=invalid-name try: from sageattention import sageattn SAGEATTN_IS_AVAILABLE = True except: SAGEATTN_IS_AVAILABLE = False from comfy.ldm.modules.attention import optimized_attention def set_attention_func(attention_mode, heads): if attention_mode == "sdpa" or attention_mode == "fused_sdpa": def func(q, k, v, is_causal=False, attn_mask=None): return F.scaled_dot_product_attention(q, k, v, attn_mask=attn_mask, dropout_p=0.0, is_causal=is_causal) return func elif attention_mode == "comfy": def func(q, k, v, is_causal=False, attn_mask=None): return optimized_attention(q, k, v, mask=attn_mask, heads=heads, skip_reshape=True) return func elif attention_mode == "sageattn" or attention_mode == "fused_sageattn": @torch.compiler.disable() def func(q, k, v, is_causal=False, attn_mask=None): return sageattn(q.to(v), k.to(v), v, is_causal=is_causal, attn_mask=attn_mask) return func elif attention_mode == "sageattn_qk_int8_pv_fp16_cuda": from sageattention import sageattn_qk_int8_pv_fp16_cuda @torch.compiler.disable() def func(q, k, v, is_causal=False, attn_mask=None): return sageattn_qk_int8_pv_fp16_cuda(q.to(v), k.to(v), v, is_causal=is_causal, attn_mask=attn_mask, pv_accum_dtype="fp32") return func elif attention_mode == "sageattn_qk_int8_pv_fp16_triton": from sageattention import sageattn_qk_int8_pv_fp16_triton @torch.compiler.disable() def func(q, k, v, is_causal=False, attn_mask=None): return sageattn_qk_int8_pv_fp16_triton(q.to(v), k.to(v), v, is_causal=is_causal, attn_mask=attn_mask) return func elif attention_mode == "sageattn_qk_int8_pv_fp8_cuda": from sageattention import sageattn_qk_int8_pv_fp8_cuda @torch.compiler.disable() def func(q, k, v, is_causal=False, attn_mask=None): return sageattn_qk_int8_pv_fp8_cuda(q.to(v), k.to(v), v, is_causal=is_causal, attn_mask=attn_mask, pv_accum_dtype="fp32+fp32") return func #for fastercache def fft(tensor): tensor_fft = torch.fft.fft2(tensor) tensor_fft_shifted = torch.fft.fftshift(tensor_fft) B, C, H, W = tensor.size() radius = min(H, W) // 5 Y, X = torch.meshgrid(torch.arange(H), torch.arange(W)) center_x, center_y = W // 2, H // 2 mask = (X - center_x) ** 2 + (Y - center_y) ** 2 <= radius ** 2 low_freq_mask = mask.unsqueeze(0).unsqueeze(0).to(tensor.device) high_freq_mask = ~low_freq_mask low_freq_fft = tensor_fft_shifted * low_freq_mask high_freq_fft = tensor_fft_shifted * high_freq_mask return low_freq_fft, high_freq_fft #for teacache def poly1d(coefficients, x): result = torch.zeros_like(x) for i, coeff in enumerate(coefficients): result += coeff * (x ** (len(coefficients) - 1 - i)) return result.abs() #region Attention class CogVideoXAttnProcessor2_0: r""" Processor for implementing scaled dot-product attention for the CogVideoX model. It applies a rotary embedding on query and key vectors, but does not include spatial normalization. """ def __init__(self, attn_func, attention_mode: Optional[str] = None): if not hasattr(F, "scaled_dot_product_attention"): raise ImportError("CogVideoXAttnProcessor requires PyTorch 2.0, to use it, please upgrade PyTorch to 2.0.") self.attention_mode = attention_mode self.attn_func = attn_func def __call__( self, attn: Attention, hidden_states: torch.Tensor, encoder_hidden_states: torch.Tensor, attention_mask: Optional[torch.Tensor] = None, image_rotary_emb: Optional[torch.Tensor] = None, ) -> torch.Tensor: text_seq_length = encoder_hidden_states.size(1) hidden_states = torch.cat([encoder_hidden_states, hidden_states], dim=1) batch_size, sequence_length, _ = ( hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape ) if attention_mask is not None: attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size) attention_mask = attention_mask.view(batch_size, attn.heads, -1, attention_mask.shape[-1]) if attn.to_q.weight.dtype == torch.float16 or attn.to_q.weight.dtype == torch.bfloat16: hidden_states = hidden_states.to(attn.to_q.weight.dtype) if not "fused" in self.attention_mode: query = attn.to_q(hidden_states) key = attn.to_k(hidden_states) value = attn.to_v(hidden_states) else: qkv = attn.to_qkv(hidden_states) split_size = qkv.shape[-1] // 3 query, key, value = torch.split(qkv, split_size, dim=-1) inner_dim = key.shape[-1] head_dim = inner_dim // attn.heads query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) if attn.norm_q is not None: query = attn.norm_q(query) if attn.norm_k is not None: key = attn.norm_k(key) # Apply RoPE if needed if image_rotary_emb is not None: query[:, :, text_seq_length:] = apply_rotary_emb(query[:, :, text_seq_length:], image_rotary_emb) if not attn.is_cross_attention: key[:, :, text_seq_length:] = apply_rotary_emb(key[:, :, text_seq_length:], image_rotary_emb) #feta if is_enhance_enabled(): feta_scores = get_feta_scores(attn, query, key, head_dim, text_seq_length) hidden_states = self.attn_func(query, key, value, attn_mask=attention_mask, is_causal=False) if self.attention_mode != "comfy": hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim) # linear proj hidden_states = attn.to_out[0](hidden_states) # dropout hidden_states = attn.to_out[1](hidden_states) encoder_hidden_states, hidden_states = hidden_states.split( [text_seq_length, hidden_states.size(1) - text_seq_length], dim=1 ) if is_enhance_enabled(): hidden_states *= feta_scores return hidden_states, encoder_hidden_states #region Blocks @maybe_allow_in_graph class CogVideoXBlock(nn.Module): r""" Transformer block used in [CogVideoX](https://github.com/THUDM/CogVideo) model. Parameters: dim (`int`): The number of channels in the input and output. num_attention_heads (`int`): The number of heads to use for multi-head attention. attention_head_dim (`int`): The number of channels in each head. time_embed_dim (`int`): The number of channels in timestep embedding. dropout (`float`, defaults to `0.0`): The dropout probability to use. activation_fn (`str`, defaults to `"gelu-approximate"`): Activation function to be used in feed-forward. attention_bias (`bool`, defaults to `False`): Whether or not to use bias in attention projection layers. qk_norm (`bool`, defaults to `True`): Whether or not to use normalization after query and key projections in Attention. norm_elementwise_affine (`bool`, defaults to `True`): Whether to use learnable elementwise affine parameters for normalization. norm_eps (`float`, defaults to `1e-5`): Epsilon value for normalization layers. final_dropout (`bool` defaults to `False`): Whether to apply a final dropout after the last feed-forward layer. ff_inner_dim (`int`, *optional*, defaults to `None`): Custom hidden dimension of Feed-forward layer. If not provided, `4 * dim` is used. ff_bias (`bool`, defaults to `True`): Whether or not to use bias in Feed-forward layer. attention_out_bias (`bool`, defaults to `True`): Whether or not to use bias in Attention output projection layer. """ def __init__( self, dim: int, num_attention_heads: int, attention_head_dim: int, time_embed_dim: int, dropout: float = 0.0, activation_fn: str = "gelu-approximate", attention_bias: bool = False, qk_norm: bool = True, norm_elementwise_affine: bool = True, norm_eps: float = 1e-5, final_dropout: bool = True, ff_inner_dim: Optional[int] = None, ff_bias: bool = True, attention_out_bias: bool = True, attention_mode: Optional[str] = "sdpa", ): super().__init__() # 1. Self Attention self.norm1 = CogVideoXLayerNormZero(time_embed_dim, dim, norm_elementwise_affine, norm_eps, bias=True) attn_func = set_attention_func(attention_mode, num_attention_heads) self.attn1 = Attention( query_dim=dim, dim_head=attention_head_dim, heads=num_attention_heads, qk_norm="layer_norm" if qk_norm else None, eps=1e-6, bias=attention_bias, out_bias=attention_out_bias, processor=CogVideoXAttnProcessor2_0(attn_func, attention_mode=attention_mode), ) # 2. Feed Forward self.norm2 = CogVideoXLayerNormZero(time_embed_dim, dim, norm_elementwise_affine, norm_eps, bias=True) self.ff = FeedForward( dim, dropout=dropout, activation_fn=activation_fn, final_dropout=final_dropout, inner_dim=ff_inner_dim, bias=ff_bias, ) self.cached_hidden_states = [] self.cached_encoder_hidden_states = [] def forward( self, hidden_states: torch.Tensor, encoder_hidden_states: torch.Tensor, temb: torch.Tensor, image_rotary_emb: Optional[Tuple[torch.Tensor, torch.Tensor]] = None, video_flow_feature: Optional[torch.Tensor] = None, fuser=None, block_use_fastercache=False, fastercache_counter=0, fastercache_start_step=15, fastercache_device="cuda:0", ) -> torch.Tensor: #print("hidden_states in block: ", hidden_states.shape) #1.5: torch.Size([2, 3200, 3072]) 10.: torch.Size([2, 6400, 3072]) text_seq_length = encoder_hidden_states.size(1) # norm & modulate norm_hidden_states, norm_encoder_hidden_states, gate_msa, enc_gate_msa = self.norm1( hidden_states, encoder_hidden_states, temb ) #print("norm_hidden_states in block: ", norm_hidden_states.shape) #torch.Size([2, 3200, 3072]) # Tora Motion-guidance Fuser if video_flow_feature is not None: H, W = video_flow_feature.shape[-2:] T = norm_hidden_states.shape[1] // H // W h = rearrange(norm_hidden_states, "B (T H W) C -> (B T) C H W", H=H, W=W) h = fuser(h, video_flow_feature.to(h), T=T) norm_hidden_states = rearrange(h, "(B T) C H W -> B (T H W) C", T=T) del h, fuser #region fastercache if block_use_fastercache: B = norm_hidden_states.shape[0] if fastercache_counter >= fastercache_start_step + 3 and fastercache_counter%3!=0 and self.cached_hidden_states[-1].shape[0] >= B: attn_hidden_states = ( self.cached_hidden_states[1][:B] + (self.cached_hidden_states[1][:B] - self.cached_hidden_states[0][:B]) * 0.3 ).to(norm_hidden_states.device, non_blocking=True) attn_encoder_hidden_states = ( self.cached_encoder_hidden_states[1][:B] + (self.cached_encoder_hidden_states[1][:B] - self.cached_encoder_hidden_states[0][:B]) * 0.3 ).to(norm_hidden_states.device, non_blocking=True) else: attn_hidden_states, attn_encoder_hidden_states = self.attn1( hidden_states=norm_hidden_states, encoder_hidden_states=norm_encoder_hidden_states, image_rotary_emb=image_rotary_emb, ) if fastercache_counter == fastercache_start_step: self.cached_hidden_states = [attn_hidden_states.to(fastercache_device), attn_hidden_states.to(fastercache_device)] self.cached_encoder_hidden_states = [attn_encoder_hidden_states.to(fastercache_device), attn_encoder_hidden_states.to(fastercache_device)] elif fastercache_counter > fastercache_start_step: self.cached_hidden_states[-1].copy_(attn_hidden_states.to(fastercache_device)) self.cached_encoder_hidden_states[-1].copy_(attn_encoder_hidden_states.to(fastercache_device)) else: attn_hidden_states, attn_encoder_hidden_states = self.attn1( hidden_states=norm_hidden_states, encoder_hidden_states=norm_encoder_hidden_states, image_rotary_emb=image_rotary_emb ) hidden_states = hidden_states + gate_msa * attn_hidden_states encoder_hidden_states = encoder_hidden_states + enc_gate_msa * attn_encoder_hidden_states # norm & modulate norm_hidden_states, norm_encoder_hidden_states, gate_ff, enc_gate_ff = self.norm2( hidden_states, encoder_hidden_states, temb ) # feed-forward norm_hidden_states = torch.cat([norm_encoder_hidden_states, norm_hidden_states], dim=1) ff_output = self.ff(norm_hidden_states) hidden_states = hidden_states + gate_ff * ff_output[:, text_seq_length:] encoder_hidden_states = encoder_hidden_states + enc_gate_ff * ff_output[:, :text_seq_length] return hidden_states, encoder_hidden_states #region Transformer class CogVideoXTransformer3DModel(ModelMixin, ConfigMixin, PeftAdapterMixin): """ A Transformer model for video-like data in [CogVideoX](https://github.com/THUDM/CogVideo). Parameters: num_attention_heads (`int`, defaults to `30`): The number of heads to use for multi-head attention. attention_head_dim (`int`, defaults to `64`): The number of channels in each head. in_channels (`int`, defaults to `16`): The number of channels in the input. out_channels (`int`, *optional*, defaults to `16`): The number of channels in the output. flip_sin_to_cos (`bool`, defaults to `True`): Whether to flip the sin to cos in the time embedding. time_embed_dim (`int`, defaults to `512`): Output dimension of timestep embeddings. text_embed_dim (`int`, defaults to `4096`): Input dimension of text embeddings from the text encoder. num_layers (`int`, defaults to `30`): The number of layers of Transformer blocks to use. dropout (`float`, defaults to `0.0`): The dropout probability to use. attention_bias (`bool`, defaults to `True`): Whether or not to use bias in the attention projection layers. sample_width (`int`, defaults to `90`): The width of the input latents. sample_height (`int`, defaults to `60`): The height of the input latents. sample_frames (`int`, defaults to `49`): The number of frames in the input latents. Note that this parameter was incorrectly initialized to 49 instead of 13 because CogVideoX processed 13 latent frames at once in its default and recommended settings, but cannot be changed to the correct value to ensure backwards compatibility. To create a transformer with K latent frames, the correct value to pass here would be: ((K - 1) * temporal_compression_ratio + 1). patch_size (`int`, defaults to `2`): The size of the patches to use in the patch embedding layer. temporal_compression_ratio (`int`, defaults to `4`): The compression ratio across the temporal dimension. See documentation for `sample_frames`. max_text_seq_length (`int`, defaults to `226`): The maximum sequence length of the input text embeddings. activation_fn (`str`, defaults to `"gelu-approximate"`): Activation function to use in feed-forward. timestep_activation_fn (`str`, defaults to `"silu"`): Activation function to use when generating the timestep embeddings. norm_elementwise_affine (`bool`, defaults to `True`): Whether or not to use elementwise affine in normalization layers. norm_eps (`float`, defaults to `1e-5`): The epsilon value to use in normalization layers. spatial_interpolation_scale (`float`, defaults to `1.875`): Scaling factor to apply in 3D positional embeddings across spatial dimensions. temporal_interpolation_scale (`float`, defaults to `1.0`): Scaling factor to apply in 3D positional embeddings across temporal dimensions. """ _supports_gradient_checkpointing = True @register_to_config def __init__( self, num_attention_heads: int = 30, attention_head_dim: int = 64, in_channels: int = 16, out_channels: Optional[int] = 16, flip_sin_to_cos: bool = True, freq_shift: int = 0, time_embed_dim: int = 512, ofs_embed_dim: Optional[int] = None, text_embed_dim: int = 4096, num_layers: int = 30, dropout: float = 0.0, attention_bias: bool = True, sample_width: int = 90, sample_height: int = 60, sample_frames: int = 49, patch_size: int = 2, patch_size_t: int = None, temporal_compression_ratio: int = 4, max_text_seq_length: int = 226, activation_fn: str = "gelu-approximate", timestep_activation_fn: str = "silu", norm_elementwise_affine: bool = True, norm_eps: float = 1e-5, spatial_interpolation_scale: float = 1.875, temporal_interpolation_scale: float = 1.0, use_rotary_positional_embeddings: bool = False, use_learned_positional_embeddings: bool = False, patch_bias: bool = True, attention_mode: Optional[str] = "sdpa", ): super().__init__() inner_dim = num_attention_heads * attention_head_dim if not use_rotary_positional_embeddings and use_learned_positional_embeddings: raise ValueError( "There are no CogVideoX checkpoints available with disable rotary embeddings and learned positional " "embeddings. If you're using a custom model and/or believe this should be supported, please open an " "issue at https://github.com/huggingface/diffusers/issues." ) # 1. Patch embedding self.patch_embed = CogVideoXPatchEmbed( patch_size=patch_size, patch_size_t=patch_size_t, in_channels=in_channels, embed_dim=inner_dim, text_embed_dim=text_embed_dim, bias=patch_bias, sample_width=sample_width, sample_height=sample_height, sample_frames=sample_frames, temporal_compression_ratio=temporal_compression_ratio, max_text_seq_length=max_text_seq_length, spatial_interpolation_scale=spatial_interpolation_scale, temporal_interpolation_scale=temporal_interpolation_scale, use_positional_embeddings=not use_rotary_positional_embeddings, use_learned_positional_embeddings=use_learned_positional_embeddings, ) self.embedding_dropout = nn.Dropout(dropout) # 2. Time embeddings self.time_proj = Timesteps(inner_dim, flip_sin_to_cos, freq_shift) self.time_embedding = TimestepEmbedding(inner_dim, time_embed_dim, timestep_activation_fn) self.ofs_proj = None self.ofs_embedding = None if ofs_embed_dim: self.ofs_proj = Timesteps(ofs_embed_dim, flip_sin_to_cos, freq_shift) self.ofs_embedding = TimestepEmbedding(ofs_embed_dim, ofs_embed_dim, timestep_activation_fn) # same as time embeddings, for ofs # 3. Define spatio-temporal transformers blocks self.transformer_blocks = nn.ModuleList( [ CogVideoXBlock( dim=inner_dim, num_attention_heads=num_attention_heads, attention_head_dim=attention_head_dim, time_embed_dim=time_embed_dim, dropout=dropout, activation_fn=activation_fn, attention_bias=attention_bias, attention_mode=attention_mode, norm_elementwise_affine=norm_elementwise_affine, norm_eps=norm_eps, ) for _ in range(num_layers) ] ) self.norm_final = nn.LayerNorm(inner_dim, norm_eps, norm_elementwise_affine) # 4. Output blocks self.norm_out = AdaLayerNorm( embedding_dim=time_embed_dim, output_dim=2 * inner_dim, norm_elementwise_affine=norm_elementwise_affine, norm_eps=norm_eps, chunk_dim=1, ) if patch_size_t is None: # For CogVideox 1.0 output_dim = patch_size * patch_size * out_channels else: # For CogVideoX 1.5 output_dim = patch_size * patch_size * patch_size_t * out_channels self.proj_out = nn.Linear(inner_dim, output_dim) self.gradient_checkpointing = False self.attention_mode = attention_mode #tora self.fuser_list = None #fastercache self.use_fastercache = False self.fastercache_counter = 0 self.fastercache_start_step = 15 self.fastercache_lf_step = 40 self.fastercache_hf_step = 30 self.fastercache_device = "cuda" self.fastercache_num_blocks_to_cache = len(self.transformer_blocks) #teacache self.use_teacache = False self.teacache_rel_l1_thresh = 0.0 if not self.config.use_rotary_positional_embeddings: #CogVideoX-2B self.teacache_coefficients = [-3.10658903e+01, 2.54732368e+01, -5.92380459e+00, 1.75769064e+00, -3.61568434e-03] else: #CogVideoX-5B self.teacache_coefficients = [-1.53880483e+03, 8.43202495e+02, -1.34363087e+02, 7.97131516e+00, -5.23162339e-02] def _set_gradient_checkpointing(self, module, value=False): self.gradient_checkpointing = value #region forward def forward( self, hidden_states: torch.Tensor, encoder_hidden_states: torch.Tensor, timestep: Union[int, float, torch.LongTensor], timestep_cond: Optional[torch.Tensor] = None, ofs: Optional[Union[int, float, torch.LongTensor]] = None, image_rotary_emb: Optional[Tuple[torch.Tensor, torch.Tensor]] = None, controlnet_states: torch.Tensor = None, controlnet_weights: Optional[Union[float, int, list, np.ndarray, torch.FloatTensor]] = 1.0, video_flow_features: Optional[torch.Tensor] = None, return_dict: bool = True, ): batch_size, num_frames, channels, height, width = hidden_states.shape set_num_frames(num_frames) #enhance a video global # 1. Time embedding timesteps = timestep t_emb = self.time_proj(timesteps) # timesteps does not contain any weights and will always return f32 tensors # but time_embedding might actually be running in fp16. so we need to cast here. # there might be better ways to encapsulate this. t_emb = t_emb.to(dtype=hidden_states.dtype) emb = self.time_embedding(t_emb, timestep_cond) if self.ofs_embedding is not None: #1.5 I2V ofs_emb = self.ofs_proj(ofs) ofs_emb = ofs_emb.to(dtype=hidden_states.dtype) ofs_emb = self.ofs_embedding(ofs_emb) emb = emb + ofs_emb # 2. Patch embedding p = self.config.patch_size p_t = self.config.patch_size_t #print("hidden_states before patch_embedding", hidden_states.shape) #torch.Size([2, 4, 16, 60, 90]) hidden_states = self.patch_embed(encoder_hidden_states, hidden_states) #print("hidden_states after patch_embedding", hidden_states.shape) #1.5: torch.Size([2, 2926, 3072]) #1.0: torch.Size([2, 5626, 3072]) hidden_states = self.embedding_dropout(hidden_states) text_seq_length = encoder_hidden_states.shape[1] encoder_hidden_states = hidden_states[:, :text_seq_length] hidden_states = hidden_states[:, text_seq_length:] #print("hidden_states after split", hidden_states.shape) #1.5: torch.Size([2, 2700, 3072]) #1.0: torch.Size([2, 5400, 3072]) if self.use_fastercache: self.fastercache_counter+=1 if self.fastercache_counter >= self.fastercache_start_step + 3 and self.fastercache_counter % 5 !=0: # 3. Transformer blocks for i, block in enumerate(self.transformer_blocks): hidden_states, encoder_hidden_states = block( hidden_states=hidden_states[:1], encoder_hidden_states=encoder_hidden_states[:1], temb=emb[:1], image_rotary_emb=image_rotary_emb, video_flow_feature=video_flow_features[i][:1] if video_flow_features is not None else None, fuser = self.fuser_list[i] if self.fuser_list is not None else None, block_use_fastercache = i <= self.fastercache_num_blocks_to_cache, fastercache_counter = self.fastercache_counter, fastercache_start_step = self.fastercache_start_step, fastercache_device = self.fastercache_device ) if (controlnet_states is not None) and (i < len(controlnet_states)): controlnet_states_block = controlnet_states[i] controlnet_block_weight = 1.0 if isinstance(controlnet_weights, (list, np.ndarray)) or torch.is_tensor(controlnet_weights): controlnet_block_weight = controlnet_weights[i] elif isinstance(controlnet_weights, (float, int)): controlnet_block_weight = controlnet_weights hidden_states = hidden_states + controlnet_states_block * controlnet_block_weight if not self.config.use_rotary_positional_embeddings: # CogVideoX-2B hidden_states = self.norm_final(hidden_states) else: # CogVideoX-5B hidden_states = torch.cat([encoder_hidden_states, hidden_states], dim=1) hidden_states = self.norm_final(hidden_states) hidden_states = hidden_states[:, text_seq_length:] # 4. Final block hidden_states = self.norm_out(hidden_states, temb=emb[:1]) hidden_states = self.proj_out(hidden_states) # 5. Unpatchify # Note: we use `-1` instead of `channels`: # - It is okay to `channels` use for CogVideoX-2b and CogVideoX-5b (number of input channels is equal to output channels) # - However, for CogVideoX-5b-I2V also takes concatenated input image latents (number of input channels is twice the output channels) if p_t is None: output = hidden_states.reshape(1, num_frames, height // p, width // p, -1, p, p) output = output.permute(0, 1, 4, 2, 5, 3, 6).flatten(5, 6).flatten(3, 4) else: output = hidden_states.reshape( 1, (num_frames + p_t - 1) // p_t, height // p, width // p, -1, p_t, p, p ) output = output.permute(0, 1, 5, 4, 2, 6, 3, 7).flatten(6, 7).flatten(4, 5).flatten(1, 2) (bb, tt, cc, hh, ww) = output.shape cond = rearrange(output, "B T C H W -> (B T) C H W", B=bb, C=cc, T=tt, H=hh, W=ww) lf_c, hf_c = fft(cond.float()) #lf_step = 40 #hf_step = 30 if self.fastercache_counter <= self.fastercache_lf_step: self.delta_lf = self.delta_lf * 1.1 if self.fastercache_counter >= self.fastercache_hf_step: self.delta_hf = self.delta_hf * 1.1 new_hf_uc = self.delta_hf + hf_c new_lf_uc = self.delta_lf + lf_c combine_uc = new_lf_uc + new_hf_uc combined_fft = torch.fft.ifftshift(combine_uc) recovered_uncond = torch.fft.ifft2(combined_fft).real recovered_uncond = rearrange(recovered_uncond.to(output.dtype), "(B T) C H W -> B T C H W", B=bb, C=cc, T=tt, H=hh, W=ww) output = torch.cat([output, recovered_uncond]) else: if self.use_teacache: if not hasattr(self, 'accumulated_rel_l1_distance'): should_calc = True self.accumulated_rel_l1_distance = 0 else: self.accumulated_rel_l1_distance += poly1d(self.teacache_coefficients, ((emb-self.previous_modulated_input).abs().mean() / self.previous_modulated_input.abs().mean())) if self.accumulated_rel_l1_distance < self.teacache_rel_l1_thresh: should_calc = False self.teacache_counter += 1 else: should_calc = True self.accumulated_rel_l1_distance = 0 #print("self.accumulated_rel_l1_distance ", self.accumulated_rel_l1_distance) self.previous_modulated_input = emb if not should_calc: hidden_states += self.previous_residual encoder_hidden_states += self.previous_residual_encoder if not self.use_teacache or (self.use_teacache and should_calc): if self.use_teacache: ori_hidden_states = hidden_states.clone() ori_encoder_hidden_states = encoder_hidden_states.clone() for i, block in enumerate(self.transformer_blocks): hidden_states, encoder_hidden_states = block( hidden_states=hidden_states, encoder_hidden_states=encoder_hidden_states, temb=emb, image_rotary_emb=image_rotary_emb, video_flow_feature=video_flow_features[i] if video_flow_features is not None else None, fuser = self.fuser_list[i] if self.fuser_list is not None else None, block_use_fastercache = i <= self.fastercache_num_blocks_to_cache, fastercache_counter = self.fastercache_counter, fastercache_start_step = self.fastercache_start_step, fastercache_device = self.fastercache_device ) #controlnet if (controlnet_states is not None) and (i < len(controlnet_states)): controlnet_states_block = controlnet_states[i] controlnet_block_weight = 1.0 if isinstance(controlnet_weights, (list, np.ndarray)) or torch.is_tensor(controlnet_weights): controlnet_block_weight = controlnet_weights[i] print(controlnet_block_weight) elif isinstance(controlnet_weights, (float, int)): controlnet_block_weight = controlnet_weights hidden_states = hidden_states + controlnet_states_block * controlnet_block_weight if self.use_teacache: self.previous_residual = hidden_states - ori_hidden_states self.previous_residual_encoder = encoder_hidden_states - ori_encoder_hidden_states if not self.config.use_rotary_positional_embeddings: # CogVideoX-2B hidden_states = self.norm_final(hidden_states) else: # CogVideoX-5B hidden_states = torch.cat([encoder_hidden_states, hidden_states], dim=1) hidden_states = self.norm_final(hidden_states) hidden_states = hidden_states[:, text_seq_length:] # 4. Final block hidden_states = self.norm_out(hidden_states, temb=emb) hidden_states = self.proj_out(hidden_states) # 5. Unpatchify # Note: we use `-1` instead of `channels`: # - It is okay to `channels` use for CogVideoX-2b and CogVideoX-5b (number of input channels is equal to output channels) # - However, for CogVideoX-5b-I2V also takes concatenated input image latents (number of input channels is twice the output channels) if p_t is None: output = hidden_states.reshape(batch_size, num_frames, height // p, width // p, -1, p, p) output = output.permute(0, 1, 4, 2, 5, 3, 6).flatten(5, 6).flatten(3, 4) else: output = hidden_states.reshape( batch_size, (num_frames + p_t - 1) // p_t, height // p, width // p, -1, p_t, p, p ) output = output.permute(0, 1, 5, 4, 2, 6, 3, 7).flatten(6, 7).flatten(4, 5).flatten(1, 2) if self.fastercache_counter >= self.fastercache_start_step + 1: (bb, tt, cc, hh, ww) = output.shape cond = rearrange(output[0:1].float(), "B T C H W -> (B T) C H W", B=bb//2, C=cc, T=tt, H=hh, W=ww) uncond = rearrange(output[1:2].float(), "B T C H W -> (B T) C H W", B=bb//2, C=cc, T=tt, H=hh, W=ww) lf_c, hf_c = fft(cond) lf_uc, hf_uc = fft(uncond) self.delta_lf = lf_uc - lf_c self.delta_hf = hf_uc - hf_c if not return_dict: return (output,) return Transformer2DModelOutput(sample=output)