Our3D / lib /grid.py
yansong1616's picture
Upload 384 files
b177539 verified
raw
history blame
17.2 kB
import os
import time
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
import time
from torch.utils.cpp_extension import load
parent_dir = os.path.dirname(os.path.abspath(__file__))
render_utils_cuda = load(
name='render_utils_cuda',
sources=[
os.path.join(parent_dir, path)
for path in ['cuda/render_utils.cpp', 'cuda/render_utils_kernel.cu']],
verbose=True)
total_variation_cuda = load(
name='total_variation_cuda',
sources=[
os.path.join(parent_dir, path)
for path in ['cuda/total_variation.cpp', 'cuda/total_variation_kernel.cu']],
verbose=True)
def create_grid(type, **kwargs):
if type == 'DenseGrid':
return DenseGrid(**kwargs)
elif type == 'TensoRFGrid':
return TensoRFGrid(**kwargs)
else:
raise NotImplementedError
''' Dense 3D grid
'''
class DenseGrid(nn.Module):
def __init__(self, channels, world_size, xyz_min, xyz_max, **kwargs):
super(DenseGrid, self).__init__()
self.channels = channels
self.world_size = world_size
self.register_buffer('xyz_min', torch.Tensor(xyz_min))
self.register_buffer('xyz_max', torch.Tensor(xyz_max))
self.grid = nn.Parameter(torch.zeros([1, channels, *world_size]))
print(self.xyz_min, self.xyz_max, self.world_size)
def forward(self, xyz):
'''
xyz: global coordinates to query
'''
shape = xyz.shape[:-1]
xyz = xyz.reshape(1,1,1,-1,3)
ind_norm = ((xyz - self.xyz_min) / (self.xyz_max - self.xyz_min)).flip((-1,)) * 2 - 1
out = F.grid_sample(self.grid, ind_norm, mode='bilinear', align_corners=True)
out = out.reshape(self.channels,-1).T.reshape(*shape,self.channels)
if self.channels == 1:
out = out.squeeze(-1)
return out
def scale_volume_grid(self, new_world_size):
if self.channels == 0:
self.grid = nn.Parameter(torch.zeros([1, self.channels, *new_world_size]))
else:
self.grid = nn.Parameter(
F.interpolate(self.grid.data, size=tuple(new_world_size), mode='trilinear', align_corners=True))
def total_variation_add_grad(self, wx, wy, wz, dense_mode):
'''Add gradients by total variation loss in-place'''
total_variation_cuda.total_variation_add_grad(
self.grid, self.grid.grad, wx, wy, wz, dense_mode)
def get_dense_grid(self):
return self.grid
@torch.no_grad()
def __isub__(self, val):
self.grid.data -= val
return self
def extra_repr(self):
return f'channels={self.channels}, world_size={self.world_size.tolist()}'
# ''' Utilize autograd for 3D mask generation
# '''
# class ConstrainedGrad(torch.autograd.Function):
# @staticmethod
# def forward(ctx, inp):
# if inp.requires_grad:
# ctx.save_for_backward(inp)
# return inp
# @staticmethod
# @torch.autograd.function.once_differentiable
# def backward(ctx, grad_back):
# '''
# grad_back should be [0,1]
# '''
# val = ctx.saved_tensors[0]
# return grad_back * (1-x), None, None
# ''' Dense 3D grid for 3D mask
# '''
# class MaskDenseGrid(nn.Module):
# def __init__(self, channels, world_size, xyz_min, xyz_max, **kwargs):
# super(MaskDenseGrid, self).__init__()
# self.channels = channels
# self.world_size = world_size
# self.register_buffer('xyz_min', torch.Tensor(xyz_min))
# self.register_buffer('xyz_max', torch.Tensor(xyz_max))
# self.grid = nn.Parameter(torch.zeros([1, channels, *world_size]))
# def forward(self, xyz):
# '''
# xyz: global coordinates to query
# '''
# shape = xyz.shape[:-1]
# xyz = xyz.reshape(1,1,1,-1,3)
# ind_norm = ((xyz - self.xyz_min) / (self.xyz_max - self.xyz_min)).flip((-1,)) * 2 - 1
# # modify the backward gradients
# out = F.grid_sample(ConstrainedGrad.apply(self.grid), ind_norm, mode='bilinear', align_corners=True)
# out = out.reshape(self.channels,-1).T.reshape(*shape,self.channels)
# if self.channels == 1:
# out = out.squeeze(-1)
# return out
# @torch.no_grad()
# def scale_volume_grid(self, new_world_size):
# if self.channels == 0:
# self.grid = nn.Parameter(torch.zeros([1, self.channels, *new_world_size]))
# else:
# self.grid = nn.Parameter(
# F.interpolate(self.grid.data, size=tuple(new_world_size), mode='trilinear', align_corners=True))
# self.world_size = new_world_size
# @torch.no_grad()
# def total_variation_add_grad(self, wx, wy, wz, dense_mode):
# '''Add gradients by total variation loss in-place'''
# total_variation_cuda.total_variation_add_grad(
# self.grid, self.grid.grad, wx, wy, wz, dense_mode)
# @torch.no_grad()
# def get_dense_grid(self):
# return self.grid
# @torch.no_grad()
# def __isub__(self, val):
# self.grid.data -= val
# return self
# def extra_repr(self):
# return f'channels={self.channels}, world_size={self.world_size.tolist()}'
''' Vector-Matrix decomposited grid
See TensoRF: Tensorial Radiance Fields (https://arxiv.org/abs/2203.09517)
'''
class TensoRFGrid(nn.Module):
def __init__(self, channels, world_size, xyz_min, xyz_max, config):
super(TensoRFGrid, self).__init__()
self.channels = channels
self.world_size = world_size
self.config = config
self.register_buffer('xyz_min', torch.Tensor(xyz_min))
self.register_buffer('xyz_max', torch.Tensor(xyz_max))
X, Y, Z = world_size
R = config['n_comp']
Rxy = config.get('n_comp_xy', R)
self.xy_plane = nn.Parameter(torch.randn([1, Rxy, X, Y]) * 0.1)
self.xz_plane = nn.Parameter(torch.randn([1, R, X, Z]) * 0.1)
self.yz_plane = nn.Parameter(torch.randn([1, R, Y, Z]) * 0.1)
self.x_vec = nn.Parameter(torch.randn([1, R, X, 1]) * 0.1)
self.y_vec = nn.Parameter(torch.randn([1, R, Y, 1]) * 0.1)
self.z_vec = nn.Parameter(torch.randn([1, Rxy, Z, 1]) * 0.1)
if self.channels > 1:
self.f_vec = nn.Parameter(torch.ones([R+R+Rxy, channels]))
nn.init.kaiming_uniform_(self.f_vec, a=np.sqrt(5))
def forward(self, xyz):
'''
xyz: global coordinates to query
'''
shape = xyz.shape[:-1]
xyz = xyz.reshape(1,1,-1,3)
ind_norm = (xyz - self.xyz_min) / (self.xyz_max - self.xyz_min) * 2 - 1
ind_norm = torch.cat([ind_norm, torch.zeros_like(ind_norm[...,[0]])], dim=-1)
if self.channels > 1:
out = compute_tensorf_feat(
self.xy_plane, self.xz_plane, self.yz_plane,
self.x_vec, self.y_vec, self.z_vec, self.f_vec, ind_norm)
out = out.reshape(*shape,self.channels)
else:
out = compute_tensorf_val(
self.xy_plane, self.xz_plane, self.yz_plane,
self.x_vec, self.y_vec, self.z_vec, ind_norm)
out = out.reshape(*shape)
return out
def scale_volume_grid(self, new_world_size):
if self.channels == 0:
return
X, Y, Z = new_world_size
self.xy_plane = nn.Parameter(F.interpolate(self.xy_plane.data, size=[X,Y], mode='bilinear', align_corners=True))
self.xz_plane = nn.Parameter(F.interpolate(self.xz_plane.data, size=[X,Z], mode='bilinear', align_corners=True))
self.yz_plane = nn.Parameter(F.interpolate(self.yz_plane.data, size=[Y,Z], mode='bilinear', align_corners=True))
self.x_vec = nn.Parameter(F.interpolate(self.x_vec.data, size=[X,1], mode='bilinear', align_corners=True))
self.y_vec = nn.Parameter(F.interpolate(self.y_vec.data, size=[Y,1], mode='bilinear', align_corners=True))
self.z_vec = nn.Parameter(F.interpolate(self.z_vec.data, size=[Z,1], mode='bilinear', align_corners=True))
def total_variation_add_grad(self, wx, wy, wz, dense_mode):
'''Add gradients by total variation loss in-place'''
loss = wx * F.smooth_l1_loss(self.xy_plane[:,:,1:], self.xy_plane[:,:,:-1], reduction='sum') +\
wy * F.smooth_l1_loss(self.xy_plane[:,:,:,1:], self.xy_plane[:,:,:,:-1], reduction='sum') +\
wx * F.smooth_l1_loss(self.xz_plane[:,:,1:], self.xz_plane[:,:,:-1], reduction='sum') +\
wz * F.smooth_l1_loss(self.xz_plane[:,:,:,1:], self.xz_plane[:,:,:,:-1], reduction='sum') +\
wy * F.smooth_l1_loss(self.yz_plane[:,:,1:], self.yz_plane[:,:,:-1], reduction='sum') +\
wz * F.smooth_l1_loss(self.yz_plane[:,:,:,1:], self.yz_plane[:,:,:,:-1], reduction='sum') +\
wx * F.smooth_l1_loss(self.x_vec[:,:,1:], self.x_vec[:,:,:-1], reduction='sum') +\
wy * F.smooth_l1_loss(self.y_vec[:,:,1:], self.y_vec[:,:,:-1], reduction='sum') +\
wz * F.smooth_l1_loss(self.z_vec[:,:,1:], self.z_vec[:,:,:-1], reduction='sum')
loss /= 6
loss.backward()
def get_dense_grid(self):
if self.channels > 1:
feat = torch.cat([
torch.einsum('rxy,rz->rxyz', self.xy_plane[0], self.z_vec[0,:,:,0]),
torch.einsum('rxz,ry->rxyz', self.xz_plane[0], self.y_vec[0,:,:,0]),
torch.einsum('ryz,rx->rxyz', self.yz_plane[0], self.x_vec[0,:,:,0]),
])
grid = torch.einsum('rxyz,rc->cxyz', feat, self.f_vec)[None]
else:
grid = torch.einsum('rxy,rz->xyz', self.xy_plane[0], self.z_vec[0,:,:,0]) + \
torch.einsum('rxz,ry->xyz', self.xz_plane[0], self.y_vec[0,:,:,0]) + \
torch.einsum('ryz,rx->xyz', self.yz_plane[0], self.x_vec[0,:,:,0])
grid = grid[None,None]
return grid
def extra_repr(self):
return f'channels={self.channels}, world_size={self.world_size.tolist()}, n_comp={self.config["n_comp"]}'
def compute_tensorf_feat(xy_plane, xz_plane, yz_plane, x_vec, y_vec, z_vec, f_vec, ind_norm):
# Interp feature (feat shape: [n_pts, n_comp])
xy_feat = F.grid_sample(xy_plane, ind_norm[:,:,:,[1,0]], mode='bilinear', align_corners=True).flatten(0,2).T
xz_feat = F.grid_sample(xz_plane, ind_norm[:,:,:,[2,0]], mode='bilinear', align_corners=True).flatten(0,2).T
yz_feat = F.grid_sample(yz_plane, ind_norm[:,:,:,[2,1]], mode='bilinear', align_corners=True).flatten(0,2).T
x_feat = F.grid_sample(x_vec, ind_norm[:,:,:,[3,0]], mode='bilinear', align_corners=True).flatten(0,2).T
y_feat = F.grid_sample(y_vec, ind_norm[:,:,:,[3,1]], mode='bilinear', align_corners=True).flatten(0,2).T
z_feat = F.grid_sample(z_vec, ind_norm[:,:,:,[3,2]], mode='bilinear', align_corners=True).flatten(0,2).T
# Aggregate components
feat = torch.cat([
xy_feat * z_feat,
xz_feat * y_feat,
yz_feat * x_feat,
], dim=-1)
feat = torch.mm(feat, f_vec)
return feat
def compute_tensorf_val(xy_plane, xz_plane, yz_plane, x_vec, y_vec, z_vec, ind_norm):
# Interp feature (feat shape: [n_pts, n_comp])
xy_feat = F.grid_sample(xy_plane, ind_norm[:,:,:,[1,0]], mode='bilinear', align_corners=True).flatten(0,2).T
xz_feat = F.grid_sample(xz_plane, ind_norm[:,:,:,[2,0]], mode='bilinear', align_corners=True).flatten(0,2).T
yz_feat = F.grid_sample(yz_plane, ind_norm[:,:,:,[2,1]], mode='bilinear', align_corners=True).flatten(0,2).T
x_feat = F.grid_sample(x_vec, ind_norm[:,:,:,[3,0]], mode='bilinear', align_corners=True).flatten(0,2).T
y_feat = F.grid_sample(y_vec, ind_norm[:,:,:,[3,1]], mode='bilinear', align_corners=True).flatten(0,2).T
z_feat = F.grid_sample(z_vec, ind_norm[:,:,:,[3,2]], mode='bilinear', align_corners=True).flatten(0,2).T
# Aggregate components
feat = (xy_feat * z_feat).sum(-1) + (xz_feat * y_feat).sum(-1) + (yz_feat * x_feat).sum(-1)
return feat
''' Mask grid
It supports query for the known free space and unknown space.
'''
class MaskGrid(nn.Module):
def __init__(self, path=None, mask_cache_thres=None, mask=None, xyz_min=None, xyz_max=None):
super(MaskGrid, self).__init__()
if path is not None:
st = torch.load(path)
self.mask_cache_thres = mask_cache_thres
density = F.max_pool3d(st['model_state_dict']['density.grid'], kernel_size=3, padding=1, stride=1)
alpha = 1 - torch.exp(-F.softplus(density + st['model_state_dict']['act_shift']) * st['model_kwargs']['voxel_size_ratio'])
mask = (alpha >= self.mask_cache_thres).squeeze(0).squeeze(0)
xyz_min = torch.Tensor(st['model_kwargs']['xyz_min'])
xyz_max = torch.Tensor(st['model_kwargs']['xyz_max'])
else:
mask = mask.bool()
xyz_min = torch.Tensor(xyz_min)
xyz_max = torch.Tensor(xyz_max)
self.register_buffer('mask', mask)
xyz_len = xyz_max - xyz_min
self.register_buffer('xyz2ijk_scale', (torch.Tensor(list(mask.shape)) - 1) / xyz_len)
self.register_buffer('xyz2ijk_shift', -xyz_min * self.xyz2ijk_scale)
@torch.no_grad()
def forward(self, xyz):
'''Skip know freespace
@xyz: [..., 3] the xyz in global coordinate.
'''
shape = xyz.shape[:-1]
xyz = xyz.reshape(-1, 3)
mask = render_utils_cuda.maskcache_lookup(self.mask, xyz, self.xyz2ijk_scale, self.xyz2ijk_shift)
mask = mask.reshape(shape)
return mask
def extra_repr(self):
return f'mask.shape=list(self.mask.shape)'
def get_dense_grid_batch_processing(tensorf: TensoRFGrid):
'''
Expects the tensorf to be already on device and processes it on device batchwise.
Not transferring from cpu to avoid repeated transfers from cpu to device
Returns the grid which is also on device
'''
# we will construct it 3d column wise
# result_grid = torch.zeros([1, tensorf.channels, *tensorf.world_size], dtype=tensorf.xy_plane.dtype).cpu()
start_time = time.time()
# result_grid = torch.stack([torch.zeros([1, *tensorf.world_size], dtype=tensorf.x_vec.dtype).cpu() for _ in range(tensorf.channels)], dim=1)
# print(tensorf.channels, tensorf.world_size)
# result_grid = torch.zeros([1, tensorf.channels, *tensorf.world_size], dtype=tensorf.x_vec.dtype)
# debugging
result_grid = torch.zeros([1, 64, *tensorf.world_size], dtype=tensorf.x_vec.dtype)
print("Time taken for initializing the grid", time.time() - start_time)
# created y batches just in case if needed
batch_size_x = 35
batch_size_y = 35
batch_size_z = 35
for start_x in range(0, tensorf.world_size[0], batch_size_x):
end_x = start_x + batch_size_x
for start_y in range(0, tensorf.world_size[1], batch_size_y):
end_y = start_y + batch_size_y
for start_z in range(0, tensorf.world_size[2], batch_size_z):
end_z = start_z + batch_size_z
feat = torch.cat([
torch.einsum('rxy,rz->rxyz', tensorf.xy_plane[0, :, start_x:end_x, start_y:end_y], tensorf.z_vec[0,:,start_z:end_z,0]),
torch.einsum('rxz,ry->rxyz', tensorf.xz_plane[0, :, start_x:end_x, start_z:end_z], tensorf.y_vec[0,:,start_y:end_y,0]),
torch.einsum('ryz,rx->rxyz', tensorf.yz_plane[0, :, start_y:end_y, start_z:end_z], tensorf.x_vec[0,:,start_x:end_x,0]),
])
sub_grid = torch.einsum('rxyz,rc->cxyz', feat, tensorf.f_vec)[None]
result_grid[:, :, start_x:end_x, start_y:end_y, start_z:end_z] = sub_grid[:,:64,:,:,:]
return result_grid
@torch.no_grad()
def reconstruct_feature_grid(render_viewpoints_kwargs):
model = render_viewpoints_kwargs['model']
f_k0 = model.f_k0.cuda()
fg = get_dense_grid_batch_processing(f_k0).cuda()
fg_kmeans = fg.clone()
fg_kmeans = fg_kmeans.squeeze(0).permute(1, 2, 3, 0) # x, y, z, 64
fg_kmeans = fg_kmeans.reshape(-1, 64)
fg_kmeans = fg_kmeans.cpu().contiguous()
return torch.nn.functional.pad(fg, [1] * 6), fg_kmeans
if __name__ == "__main__":
with torch.no_grad():
print("Testing whether the outputted grid is the correct or not.")
tensorf = TensoRFGrid(64, torch.tensor([100, 100, 100]), 0, 1, {'n_comp': 64})
tensorf = tensorf.cuda()
start_time = time.time()
grid1 = tensorf.get_dense_grid().cpu()
print("Time taken for full gpu implementation", time.time() - start_time)
grid2 = get_dense_grid_batch_processing(tensorf)
assert grid1.isclose(grid2, atol=1e-7).all()
del grid1, grid2, tensorf
torch.cuda.empty_cache()
tensorf = TensoRFGrid(64, torch.tensor([320, 320, 320]), 0, 1, {'n_comp': 64})
tensorf = tensorf.cuda()
start_time = time.time()
grid = get_dense_grid_batch_processing(tensorf)
print("Time taken to reconstruct the grid", time.time() - start_time)
print("Program over.")