File size: 17,207 Bytes
b177539
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
import os
import time
import numpy as np

import torch
import torch.nn as nn
import torch.nn.functional as F

import time

from torch.utils.cpp_extension import load
parent_dir = os.path.dirname(os.path.abspath(__file__))
render_utils_cuda = load(
        name='render_utils_cuda',
        sources=[
            os.path.join(parent_dir, path)
            for path in ['cuda/render_utils.cpp', 'cuda/render_utils_kernel.cu']],
        verbose=True)

total_variation_cuda = load(
        name='total_variation_cuda',
        sources=[
            os.path.join(parent_dir, path)
            for path in ['cuda/total_variation.cpp', 'cuda/total_variation_kernel.cu']],
        verbose=True)


def create_grid(type, **kwargs):
    if type == 'DenseGrid':
        return DenseGrid(**kwargs)
    elif type == 'TensoRFGrid':
        return TensoRFGrid(**kwargs)
    else:
        raise NotImplementedError


''' Dense 3D grid
'''
class DenseGrid(nn.Module):
    def __init__(self, channels, world_size, xyz_min, xyz_max, **kwargs):
        super(DenseGrid, self).__init__()
        self.channels = channels
        self.world_size = world_size
        self.register_buffer('xyz_min', torch.Tensor(xyz_min))
        self.register_buffer('xyz_max', torch.Tensor(xyz_max))
        self.grid = nn.Parameter(torch.zeros([1, channels, *world_size]))
        print(self.xyz_min, self.xyz_max, self.world_size)

    def forward(self, xyz):
        '''
        xyz: global coordinates to query
        '''
        shape = xyz.shape[:-1]
        xyz = xyz.reshape(1,1,1,-1,3)
        ind_norm = ((xyz - self.xyz_min) / (self.xyz_max - self.xyz_min)).flip((-1,)) * 2 - 1
        out = F.grid_sample(self.grid, ind_norm, mode='bilinear', align_corners=True)
        out = out.reshape(self.channels,-1).T.reshape(*shape,self.channels)
        if self.channels == 1:
            out = out.squeeze(-1)
        return out

    def scale_volume_grid(self, new_world_size):
        if self.channels == 0:
            self.grid = nn.Parameter(torch.zeros([1, self.channels, *new_world_size]))
        else:
            self.grid = nn.Parameter(
                F.interpolate(self.grid.data, size=tuple(new_world_size), mode='trilinear', align_corners=True))

    def total_variation_add_grad(self, wx, wy, wz, dense_mode):
        '''Add gradients by total variation loss in-place'''
        total_variation_cuda.total_variation_add_grad(
            self.grid, self.grid.grad, wx, wy, wz, dense_mode)

    def get_dense_grid(self):
        return self.grid

    @torch.no_grad()
    def __isub__(self, val):
        self.grid.data -= val
        return self

    def extra_repr(self):
        return f'channels={self.channels}, world_size={self.world_size.tolist()}'

# ''' Utilize autograd for 3D mask generation
# '''
# class ConstrainedGrad(torch.autograd.Function):
#     @staticmethod
#     def forward(ctx, inp):
#         if inp.requires_grad:
#             ctx.save_for_backward(inp)

#         return inp

#     @staticmethod
#     @torch.autograd.function.once_differentiable
#     def backward(ctx, grad_back):
#         '''
#         grad_back should be [0,1]
#         '''
#         val = ctx.saved_tensors[0]

#         return grad_back * (1-x), None, None

# ''' Dense 3D grid for 3D mask
# '''
# class MaskDenseGrid(nn.Module):
#     def __init__(self, channels, world_size, xyz_min, xyz_max, **kwargs):
#         super(MaskDenseGrid, self).__init__()
#         self.channels = channels
#         self.world_size = world_size
#         self.register_buffer('xyz_min', torch.Tensor(xyz_min))
#         self.register_buffer('xyz_max', torch.Tensor(xyz_max))
#         self.grid = nn.Parameter(torch.zeros([1, channels, *world_size]))

#     def forward(self, xyz):
#         '''
#         xyz: global coordinates to query
#         '''
#         shape = xyz.shape[:-1]
#         xyz = xyz.reshape(1,1,1,-1,3)
#         ind_norm = ((xyz - self.xyz_min) / (self.xyz_max - self.xyz_min)).flip((-1,)) * 2 - 1
#         # modify the backward gradients
#         out = F.grid_sample(ConstrainedGrad.apply(self.grid), ind_norm, mode='bilinear', align_corners=True)
#         out = out.reshape(self.channels,-1).T.reshape(*shape,self.channels)
#         if self.channels == 1:
#             out = out.squeeze(-1)
#         return out
        
#     @torch.no_grad()
#     def scale_volume_grid(self, new_world_size):
#         if self.channels == 0:
#             self.grid = nn.Parameter(torch.zeros([1, self.channels, *new_world_size]))
#         else:
#             self.grid = nn.Parameter(
#                 F.interpolate(self.grid.data, size=tuple(new_world_size), mode='trilinear', align_corners=True))
#         self.world_size = new_world_size
    
#     @torch.no_grad()
#     def total_variation_add_grad(self, wx, wy, wz, dense_mode):
#         '''Add gradients by total variation loss in-place'''
#         total_variation_cuda.total_variation_add_grad(
#             self.grid, self.grid.grad, wx, wy, wz, dense_mode)
    
#     @torch.no_grad()
#     def get_dense_grid(self):
#         return self.grid

#     @torch.no_grad()
#     def __isub__(self, val):
#         self.grid.data -= val
#         return self

#     def extra_repr(self):
#         return f'channels={self.channels}, world_size={self.world_size.tolist()}'
    
''' Vector-Matrix decomposited grid
See TensoRF: Tensorial Radiance Fields (https://arxiv.org/abs/2203.09517)
'''
class TensoRFGrid(nn.Module):
    def __init__(self, channels, world_size, xyz_min, xyz_max, config):
        super(TensoRFGrid, self).__init__()
        self.channels = channels
        self.world_size = world_size
        self.config = config
        self.register_buffer('xyz_min', torch.Tensor(xyz_min))
        self.register_buffer('xyz_max', torch.Tensor(xyz_max))
        X, Y, Z = world_size
        R = config['n_comp']
        Rxy = config.get('n_comp_xy', R)
        self.xy_plane = nn.Parameter(torch.randn([1, Rxy, X, Y]) * 0.1)
        self.xz_plane = nn.Parameter(torch.randn([1, R, X, Z]) * 0.1)
        self.yz_plane = nn.Parameter(torch.randn([1, R, Y, Z]) * 0.1)
        self.x_vec = nn.Parameter(torch.randn([1, R, X, 1]) * 0.1)
        self.y_vec = nn.Parameter(torch.randn([1, R, Y, 1]) * 0.1)
        self.z_vec = nn.Parameter(torch.randn([1, Rxy, Z, 1]) * 0.1)
        if self.channels > 1:
            self.f_vec = nn.Parameter(torch.ones([R+R+Rxy, channels]))
            nn.init.kaiming_uniform_(self.f_vec, a=np.sqrt(5))

    def forward(self, xyz):
        '''
        xyz: global coordinates to query
        '''
        shape = xyz.shape[:-1]
        xyz = xyz.reshape(1,1,-1,3)
        ind_norm = (xyz - self.xyz_min) / (self.xyz_max - self.xyz_min) * 2 - 1
        ind_norm = torch.cat([ind_norm, torch.zeros_like(ind_norm[...,[0]])], dim=-1)
        if self.channels > 1:
            out = compute_tensorf_feat(
                    self.xy_plane, self.xz_plane, self.yz_plane,
                    self.x_vec, self.y_vec, self.z_vec, self.f_vec, ind_norm)
            out = out.reshape(*shape,self.channels)
        else:
            out = compute_tensorf_val(
                    self.xy_plane, self.xz_plane, self.yz_plane,
                    self.x_vec, self.y_vec, self.z_vec, ind_norm)
            out = out.reshape(*shape)
        return out

    def scale_volume_grid(self, new_world_size):
        if self.channels == 0:
            return
        X, Y, Z = new_world_size
        self.xy_plane = nn.Parameter(F.interpolate(self.xy_plane.data, size=[X,Y], mode='bilinear', align_corners=True))
        self.xz_plane = nn.Parameter(F.interpolate(self.xz_plane.data, size=[X,Z], mode='bilinear', align_corners=True))
        self.yz_plane = nn.Parameter(F.interpolate(self.yz_plane.data, size=[Y,Z], mode='bilinear', align_corners=True))
        self.x_vec = nn.Parameter(F.interpolate(self.x_vec.data, size=[X,1], mode='bilinear', align_corners=True))
        self.y_vec = nn.Parameter(F.interpolate(self.y_vec.data, size=[Y,1], mode='bilinear', align_corners=True))
        self.z_vec = nn.Parameter(F.interpolate(self.z_vec.data, size=[Z,1], mode='bilinear', align_corners=True))

    def total_variation_add_grad(self, wx, wy, wz, dense_mode):
        '''Add gradients by total variation loss in-place'''
        loss = wx * F.smooth_l1_loss(self.xy_plane[:,:,1:], self.xy_plane[:,:,:-1], reduction='sum') +\
               wy * F.smooth_l1_loss(self.xy_plane[:,:,:,1:], self.xy_plane[:,:,:,:-1], reduction='sum') +\
               wx * F.smooth_l1_loss(self.xz_plane[:,:,1:], self.xz_plane[:,:,:-1], reduction='sum') +\
               wz * F.smooth_l1_loss(self.xz_plane[:,:,:,1:], self.xz_plane[:,:,:,:-1], reduction='sum') +\
               wy * F.smooth_l1_loss(self.yz_plane[:,:,1:], self.yz_plane[:,:,:-1], reduction='sum') +\
               wz * F.smooth_l1_loss(self.yz_plane[:,:,:,1:], self.yz_plane[:,:,:,:-1], reduction='sum') +\
               wx * F.smooth_l1_loss(self.x_vec[:,:,1:], self.x_vec[:,:,:-1], reduction='sum') +\
               wy * F.smooth_l1_loss(self.y_vec[:,:,1:], self.y_vec[:,:,:-1], reduction='sum') +\
               wz * F.smooth_l1_loss(self.z_vec[:,:,1:], self.z_vec[:,:,:-1], reduction='sum')
        loss /= 6
        loss.backward()

    def get_dense_grid(self):
        if self.channels > 1:
            feat = torch.cat([
                torch.einsum('rxy,rz->rxyz', self.xy_plane[0], self.z_vec[0,:,:,0]),
                torch.einsum('rxz,ry->rxyz', self.xz_plane[0], self.y_vec[0,:,:,0]),
                torch.einsum('ryz,rx->rxyz', self.yz_plane[0], self.x_vec[0,:,:,0]),
            ])
            grid = torch.einsum('rxyz,rc->cxyz', feat, self.f_vec)[None]
        else:
            grid = torch.einsum('rxy,rz->xyz', self.xy_plane[0], self.z_vec[0,:,:,0]) + \
                   torch.einsum('rxz,ry->xyz', self.xz_plane[0], self.y_vec[0,:,:,0]) + \
                   torch.einsum('ryz,rx->xyz', self.yz_plane[0], self.x_vec[0,:,:,0])
            grid = grid[None,None]
        return grid

    def extra_repr(self):
        return f'channels={self.channels}, world_size={self.world_size.tolist()}, n_comp={self.config["n_comp"]}'

def compute_tensorf_feat(xy_plane, xz_plane, yz_plane, x_vec, y_vec, z_vec, f_vec, ind_norm):
    # Interp feature (feat shape: [n_pts, n_comp])
    xy_feat = F.grid_sample(xy_plane, ind_norm[:,:,:,[1,0]], mode='bilinear', align_corners=True).flatten(0,2).T
    xz_feat = F.grid_sample(xz_plane, ind_norm[:,:,:,[2,0]], mode='bilinear', align_corners=True).flatten(0,2).T
    yz_feat = F.grid_sample(yz_plane, ind_norm[:,:,:,[2,1]], mode='bilinear', align_corners=True).flatten(0,2).T
    x_feat = F.grid_sample(x_vec, ind_norm[:,:,:,[3,0]], mode='bilinear', align_corners=True).flatten(0,2).T
    y_feat = F.grid_sample(y_vec, ind_norm[:,:,:,[3,1]], mode='bilinear', align_corners=True).flatten(0,2).T
    z_feat = F.grid_sample(z_vec, ind_norm[:,:,:,[3,2]], mode='bilinear', align_corners=True).flatten(0,2).T
    # Aggregate components
    feat = torch.cat([
        xy_feat * z_feat,
        xz_feat * y_feat,
        yz_feat * x_feat,
    ], dim=-1)
    feat = torch.mm(feat, f_vec)
    return feat

def compute_tensorf_val(xy_plane, xz_plane, yz_plane, x_vec, y_vec, z_vec, ind_norm):
    # Interp feature (feat shape: [n_pts, n_comp])
    xy_feat = F.grid_sample(xy_plane, ind_norm[:,:,:,[1,0]], mode='bilinear', align_corners=True).flatten(0,2).T
    xz_feat = F.grid_sample(xz_plane, ind_norm[:,:,:,[2,0]], mode='bilinear', align_corners=True).flatten(0,2).T
    yz_feat = F.grid_sample(yz_plane, ind_norm[:,:,:,[2,1]], mode='bilinear', align_corners=True).flatten(0,2).T
    x_feat = F.grid_sample(x_vec, ind_norm[:,:,:,[3,0]], mode='bilinear', align_corners=True).flatten(0,2).T
    y_feat = F.grid_sample(y_vec, ind_norm[:,:,:,[3,1]], mode='bilinear', align_corners=True).flatten(0,2).T
    z_feat = F.grid_sample(z_vec, ind_norm[:,:,:,[3,2]], mode='bilinear', align_corners=True).flatten(0,2).T
    # Aggregate components
    feat = (xy_feat * z_feat).sum(-1) + (xz_feat * y_feat).sum(-1) + (yz_feat * x_feat).sum(-1)
    return feat


''' Mask grid
It supports query for the known free space and unknown space.
'''
class MaskGrid(nn.Module):
    def __init__(self, path=None, mask_cache_thres=None, mask=None, xyz_min=None, xyz_max=None):
        super(MaskGrid, self).__init__()
        if path is not None:
            st = torch.load(path)
            self.mask_cache_thres = mask_cache_thres
            density = F.max_pool3d(st['model_state_dict']['density.grid'], kernel_size=3, padding=1, stride=1)
            alpha = 1 - torch.exp(-F.softplus(density + st['model_state_dict']['act_shift']) * st['model_kwargs']['voxel_size_ratio'])
            mask = (alpha >= self.mask_cache_thres).squeeze(0).squeeze(0)
            xyz_min = torch.Tensor(st['model_kwargs']['xyz_min'])
            xyz_max = torch.Tensor(st['model_kwargs']['xyz_max'])
        else:
            mask = mask.bool()
            xyz_min = torch.Tensor(xyz_min)
            xyz_max = torch.Tensor(xyz_max)

        self.register_buffer('mask', mask)
        xyz_len = xyz_max - xyz_min
        self.register_buffer('xyz2ijk_scale', (torch.Tensor(list(mask.shape)) - 1) / xyz_len)
        self.register_buffer('xyz2ijk_shift', -xyz_min * self.xyz2ijk_scale)

    @torch.no_grad()
    def forward(self, xyz):
        '''Skip know freespace
        @xyz:   [..., 3] the xyz in global coordinate.
        '''
        shape = xyz.shape[:-1]
        xyz = xyz.reshape(-1, 3)
        mask = render_utils_cuda.maskcache_lookup(self.mask, xyz, self.xyz2ijk_scale, self.xyz2ijk_shift)
        mask = mask.reshape(shape)
        return mask

    def extra_repr(self):
        return f'mask.shape=list(self.mask.shape)'


def get_dense_grid_batch_processing(tensorf: TensoRFGrid):
    '''
    Expects the tensorf to be already on device and processes it on device batchwise.
    Not transferring from cpu to avoid repeated transfers from cpu to device
    Returns the grid which is also on device
    '''
    # we will construct it 3d column wise
    # result_grid = torch.zeros([1, tensorf.channels, *tensorf.world_size], dtype=tensorf.xy_plane.dtype).cpu()
    start_time = time.time()
    # result_grid = torch.stack([torch.zeros([1, *tensorf.world_size], dtype=tensorf.x_vec.dtype).cpu() for _ in range(tensorf.channels)], dim=1)
#     print(tensorf.channels, tensorf.world_size)
#     result_grid = torch.zeros([1, tensorf.channels, *tensorf.world_size], dtype=tensorf.x_vec.dtype)
    # debugging
    result_grid = torch.zeros([1, 64, *tensorf.world_size], dtype=tensorf.x_vec.dtype)
    print("Time taken for initializing the grid", time.time() - start_time)

    # created y batches just in case if needed

    batch_size_x = 35
    batch_size_y = 35
    batch_size_z = 35
    for start_x in range(0, tensorf.world_size[0], batch_size_x):
        end_x = start_x + batch_size_x
        for start_y in range(0, tensorf.world_size[1], batch_size_y):
            end_y = start_y + batch_size_y
            for start_z in range(0, tensorf.world_size[2], batch_size_z):
                end_z = start_z + batch_size_z
                feat = torch.cat([
                    torch.einsum('rxy,rz->rxyz', tensorf.xy_plane[0, :, start_x:end_x, start_y:end_y], tensorf.z_vec[0,:,start_z:end_z,0]),
                    torch.einsum('rxz,ry->rxyz', tensorf.xz_plane[0, :, start_x:end_x, start_z:end_z], tensorf.y_vec[0,:,start_y:end_y,0]),
                    torch.einsum('ryz,rx->rxyz', tensorf.yz_plane[0, :, start_y:end_y, start_z:end_z], tensorf.x_vec[0,:,start_x:end_x,0]),
                ])
                sub_grid = torch.einsum('rxyz,rc->cxyz', feat, tensorf.f_vec)[None]
                result_grid[:, :, start_x:end_x, start_y:end_y, start_z:end_z] = sub_grid[:,:64,:,:,:]
    return result_grid

@torch.no_grad()
def reconstruct_feature_grid(render_viewpoints_kwargs):
    model = render_viewpoints_kwargs['model']

    f_k0 = model.f_k0.cuda()
    fg = get_dense_grid_batch_processing(f_k0).cuda()

    fg_kmeans = fg.clone()
    fg_kmeans = fg_kmeans.squeeze(0).permute(1, 2, 3, 0) # x, y, z, 64
    fg_kmeans = fg_kmeans.reshape(-1, 64)
    fg_kmeans = fg_kmeans.cpu().contiguous()

    return torch.nn.functional.pad(fg, [1] * 6), fg_kmeans

if __name__ == "__main__":
    with torch.no_grad():
        print("Testing whether the outputted grid is the correct or not.")
        tensorf = TensoRFGrid(64, torch.tensor([100, 100, 100]), 0, 1, {'n_comp': 64})
        tensorf = tensorf.cuda()
        start_time = time.time()
        grid1 = tensorf.get_dense_grid().cpu()
        print("Time taken for full gpu implementation", time.time() - start_time)
        grid2 = get_dense_grid_batch_processing(tensorf)
        assert grid1.isclose(grid2, atol=1e-7).all()
        del grid1, grid2, tensorf

        torch.cuda.empty_cache()

        tensorf = TensoRFGrid(64, torch.tensor([320, 320, 320]), 0, 1, {'n_comp': 64})
        tensorf = tensorf.cuda()
        start_time = time.time()
        grid = get_dense_grid_batch_processing(tensorf)
        print("Time taken to reconstruct the grid", time.time() - start_time)
        print("Program over.")