Spaces:
Paused
Paused
File size: 17,207 Bytes
b177539 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 |
import os
import time
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
import time
from torch.utils.cpp_extension import load
parent_dir = os.path.dirname(os.path.abspath(__file__))
render_utils_cuda = load(
name='render_utils_cuda',
sources=[
os.path.join(parent_dir, path)
for path in ['cuda/render_utils.cpp', 'cuda/render_utils_kernel.cu']],
verbose=True)
total_variation_cuda = load(
name='total_variation_cuda',
sources=[
os.path.join(parent_dir, path)
for path in ['cuda/total_variation.cpp', 'cuda/total_variation_kernel.cu']],
verbose=True)
def create_grid(type, **kwargs):
if type == 'DenseGrid':
return DenseGrid(**kwargs)
elif type == 'TensoRFGrid':
return TensoRFGrid(**kwargs)
else:
raise NotImplementedError
''' Dense 3D grid
'''
class DenseGrid(nn.Module):
def __init__(self, channels, world_size, xyz_min, xyz_max, **kwargs):
super(DenseGrid, self).__init__()
self.channels = channels
self.world_size = world_size
self.register_buffer('xyz_min', torch.Tensor(xyz_min))
self.register_buffer('xyz_max', torch.Tensor(xyz_max))
self.grid = nn.Parameter(torch.zeros([1, channels, *world_size]))
print(self.xyz_min, self.xyz_max, self.world_size)
def forward(self, xyz):
'''
xyz: global coordinates to query
'''
shape = xyz.shape[:-1]
xyz = xyz.reshape(1,1,1,-1,3)
ind_norm = ((xyz - self.xyz_min) / (self.xyz_max - self.xyz_min)).flip((-1,)) * 2 - 1
out = F.grid_sample(self.grid, ind_norm, mode='bilinear', align_corners=True)
out = out.reshape(self.channels,-1).T.reshape(*shape,self.channels)
if self.channels == 1:
out = out.squeeze(-1)
return out
def scale_volume_grid(self, new_world_size):
if self.channels == 0:
self.grid = nn.Parameter(torch.zeros([1, self.channels, *new_world_size]))
else:
self.grid = nn.Parameter(
F.interpolate(self.grid.data, size=tuple(new_world_size), mode='trilinear', align_corners=True))
def total_variation_add_grad(self, wx, wy, wz, dense_mode):
'''Add gradients by total variation loss in-place'''
total_variation_cuda.total_variation_add_grad(
self.grid, self.grid.grad, wx, wy, wz, dense_mode)
def get_dense_grid(self):
return self.grid
@torch.no_grad()
def __isub__(self, val):
self.grid.data -= val
return self
def extra_repr(self):
return f'channels={self.channels}, world_size={self.world_size.tolist()}'
# ''' Utilize autograd for 3D mask generation
# '''
# class ConstrainedGrad(torch.autograd.Function):
# @staticmethod
# def forward(ctx, inp):
# if inp.requires_grad:
# ctx.save_for_backward(inp)
# return inp
# @staticmethod
# @torch.autograd.function.once_differentiable
# def backward(ctx, grad_back):
# '''
# grad_back should be [0,1]
# '''
# val = ctx.saved_tensors[0]
# return grad_back * (1-x), None, None
# ''' Dense 3D grid for 3D mask
# '''
# class MaskDenseGrid(nn.Module):
# def __init__(self, channels, world_size, xyz_min, xyz_max, **kwargs):
# super(MaskDenseGrid, self).__init__()
# self.channels = channels
# self.world_size = world_size
# self.register_buffer('xyz_min', torch.Tensor(xyz_min))
# self.register_buffer('xyz_max', torch.Tensor(xyz_max))
# self.grid = nn.Parameter(torch.zeros([1, channels, *world_size]))
# def forward(self, xyz):
# '''
# xyz: global coordinates to query
# '''
# shape = xyz.shape[:-1]
# xyz = xyz.reshape(1,1,1,-1,3)
# ind_norm = ((xyz - self.xyz_min) / (self.xyz_max - self.xyz_min)).flip((-1,)) * 2 - 1
# # modify the backward gradients
# out = F.grid_sample(ConstrainedGrad.apply(self.grid), ind_norm, mode='bilinear', align_corners=True)
# out = out.reshape(self.channels,-1).T.reshape(*shape,self.channels)
# if self.channels == 1:
# out = out.squeeze(-1)
# return out
# @torch.no_grad()
# def scale_volume_grid(self, new_world_size):
# if self.channels == 0:
# self.grid = nn.Parameter(torch.zeros([1, self.channels, *new_world_size]))
# else:
# self.grid = nn.Parameter(
# F.interpolate(self.grid.data, size=tuple(new_world_size), mode='trilinear', align_corners=True))
# self.world_size = new_world_size
# @torch.no_grad()
# def total_variation_add_grad(self, wx, wy, wz, dense_mode):
# '''Add gradients by total variation loss in-place'''
# total_variation_cuda.total_variation_add_grad(
# self.grid, self.grid.grad, wx, wy, wz, dense_mode)
# @torch.no_grad()
# def get_dense_grid(self):
# return self.grid
# @torch.no_grad()
# def __isub__(self, val):
# self.grid.data -= val
# return self
# def extra_repr(self):
# return f'channels={self.channels}, world_size={self.world_size.tolist()}'
''' Vector-Matrix decomposited grid
See TensoRF: Tensorial Radiance Fields (https://arxiv.org/abs/2203.09517)
'''
class TensoRFGrid(nn.Module):
def __init__(self, channels, world_size, xyz_min, xyz_max, config):
super(TensoRFGrid, self).__init__()
self.channels = channels
self.world_size = world_size
self.config = config
self.register_buffer('xyz_min', torch.Tensor(xyz_min))
self.register_buffer('xyz_max', torch.Tensor(xyz_max))
X, Y, Z = world_size
R = config['n_comp']
Rxy = config.get('n_comp_xy', R)
self.xy_plane = nn.Parameter(torch.randn([1, Rxy, X, Y]) * 0.1)
self.xz_plane = nn.Parameter(torch.randn([1, R, X, Z]) * 0.1)
self.yz_plane = nn.Parameter(torch.randn([1, R, Y, Z]) * 0.1)
self.x_vec = nn.Parameter(torch.randn([1, R, X, 1]) * 0.1)
self.y_vec = nn.Parameter(torch.randn([1, R, Y, 1]) * 0.1)
self.z_vec = nn.Parameter(torch.randn([1, Rxy, Z, 1]) * 0.1)
if self.channels > 1:
self.f_vec = nn.Parameter(torch.ones([R+R+Rxy, channels]))
nn.init.kaiming_uniform_(self.f_vec, a=np.sqrt(5))
def forward(self, xyz):
'''
xyz: global coordinates to query
'''
shape = xyz.shape[:-1]
xyz = xyz.reshape(1,1,-1,3)
ind_norm = (xyz - self.xyz_min) / (self.xyz_max - self.xyz_min) * 2 - 1
ind_norm = torch.cat([ind_norm, torch.zeros_like(ind_norm[...,[0]])], dim=-1)
if self.channels > 1:
out = compute_tensorf_feat(
self.xy_plane, self.xz_plane, self.yz_plane,
self.x_vec, self.y_vec, self.z_vec, self.f_vec, ind_norm)
out = out.reshape(*shape,self.channels)
else:
out = compute_tensorf_val(
self.xy_plane, self.xz_plane, self.yz_plane,
self.x_vec, self.y_vec, self.z_vec, ind_norm)
out = out.reshape(*shape)
return out
def scale_volume_grid(self, new_world_size):
if self.channels == 0:
return
X, Y, Z = new_world_size
self.xy_plane = nn.Parameter(F.interpolate(self.xy_plane.data, size=[X,Y], mode='bilinear', align_corners=True))
self.xz_plane = nn.Parameter(F.interpolate(self.xz_plane.data, size=[X,Z], mode='bilinear', align_corners=True))
self.yz_plane = nn.Parameter(F.interpolate(self.yz_plane.data, size=[Y,Z], mode='bilinear', align_corners=True))
self.x_vec = nn.Parameter(F.interpolate(self.x_vec.data, size=[X,1], mode='bilinear', align_corners=True))
self.y_vec = nn.Parameter(F.interpolate(self.y_vec.data, size=[Y,1], mode='bilinear', align_corners=True))
self.z_vec = nn.Parameter(F.interpolate(self.z_vec.data, size=[Z,1], mode='bilinear', align_corners=True))
def total_variation_add_grad(self, wx, wy, wz, dense_mode):
'''Add gradients by total variation loss in-place'''
loss = wx * F.smooth_l1_loss(self.xy_plane[:,:,1:], self.xy_plane[:,:,:-1], reduction='sum') +\
wy * F.smooth_l1_loss(self.xy_plane[:,:,:,1:], self.xy_plane[:,:,:,:-1], reduction='sum') +\
wx * F.smooth_l1_loss(self.xz_plane[:,:,1:], self.xz_plane[:,:,:-1], reduction='sum') +\
wz * F.smooth_l1_loss(self.xz_plane[:,:,:,1:], self.xz_plane[:,:,:,:-1], reduction='sum') +\
wy * F.smooth_l1_loss(self.yz_plane[:,:,1:], self.yz_plane[:,:,:-1], reduction='sum') +\
wz * F.smooth_l1_loss(self.yz_plane[:,:,:,1:], self.yz_plane[:,:,:,:-1], reduction='sum') +\
wx * F.smooth_l1_loss(self.x_vec[:,:,1:], self.x_vec[:,:,:-1], reduction='sum') +\
wy * F.smooth_l1_loss(self.y_vec[:,:,1:], self.y_vec[:,:,:-1], reduction='sum') +\
wz * F.smooth_l1_loss(self.z_vec[:,:,1:], self.z_vec[:,:,:-1], reduction='sum')
loss /= 6
loss.backward()
def get_dense_grid(self):
if self.channels > 1:
feat = torch.cat([
torch.einsum('rxy,rz->rxyz', self.xy_plane[0], self.z_vec[0,:,:,0]),
torch.einsum('rxz,ry->rxyz', self.xz_plane[0], self.y_vec[0,:,:,0]),
torch.einsum('ryz,rx->rxyz', self.yz_plane[0], self.x_vec[0,:,:,0]),
])
grid = torch.einsum('rxyz,rc->cxyz', feat, self.f_vec)[None]
else:
grid = torch.einsum('rxy,rz->xyz', self.xy_plane[0], self.z_vec[0,:,:,0]) + \
torch.einsum('rxz,ry->xyz', self.xz_plane[0], self.y_vec[0,:,:,0]) + \
torch.einsum('ryz,rx->xyz', self.yz_plane[0], self.x_vec[0,:,:,0])
grid = grid[None,None]
return grid
def extra_repr(self):
return f'channels={self.channels}, world_size={self.world_size.tolist()}, n_comp={self.config["n_comp"]}'
def compute_tensorf_feat(xy_plane, xz_plane, yz_plane, x_vec, y_vec, z_vec, f_vec, ind_norm):
# Interp feature (feat shape: [n_pts, n_comp])
xy_feat = F.grid_sample(xy_plane, ind_norm[:,:,:,[1,0]], mode='bilinear', align_corners=True).flatten(0,2).T
xz_feat = F.grid_sample(xz_plane, ind_norm[:,:,:,[2,0]], mode='bilinear', align_corners=True).flatten(0,2).T
yz_feat = F.grid_sample(yz_plane, ind_norm[:,:,:,[2,1]], mode='bilinear', align_corners=True).flatten(0,2).T
x_feat = F.grid_sample(x_vec, ind_norm[:,:,:,[3,0]], mode='bilinear', align_corners=True).flatten(0,2).T
y_feat = F.grid_sample(y_vec, ind_norm[:,:,:,[3,1]], mode='bilinear', align_corners=True).flatten(0,2).T
z_feat = F.grid_sample(z_vec, ind_norm[:,:,:,[3,2]], mode='bilinear', align_corners=True).flatten(0,2).T
# Aggregate components
feat = torch.cat([
xy_feat * z_feat,
xz_feat * y_feat,
yz_feat * x_feat,
], dim=-1)
feat = torch.mm(feat, f_vec)
return feat
def compute_tensorf_val(xy_plane, xz_plane, yz_plane, x_vec, y_vec, z_vec, ind_norm):
# Interp feature (feat shape: [n_pts, n_comp])
xy_feat = F.grid_sample(xy_plane, ind_norm[:,:,:,[1,0]], mode='bilinear', align_corners=True).flatten(0,2).T
xz_feat = F.grid_sample(xz_plane, ind_norm[:,:,:,[2,0]], mode='bilinear', align_corners=True).flatten(0,2).T
yz_feat = F.grid_sample(yz_plane, ind_norm[:,:,:,[2,1]], mode='bilinear', align_corners=True).flatten(0,2).T
x_feat = F.grid_sample(x_vec, ind_norm[:,:,:,[3,0]], mode='bilinear', align_corners=True).flatten(0,2).T
y_feat = F.grid_sample(y_vec, ind_norm[:,:,:,[3,1]], mode='bilinear', align_corners=True).flatten(0,2).T
z_feat = F.grid_sample(z_vec, ind_norm[:,:,:,[3,2]], mode='bilinear', align_corners=True).flatten(0,2).T
# Aggregate components
feat = (xy_feat * z_feat).sum(-1) + (xz_feat * y_feat).sum(-1) + (yz_feat * x_feat).sum(-1)
return feat
''' Mask grid
It supports query for the known free space and unknown space.
'''
class MaskGrid(nn.Module):
def __init__(self, path=None, mask_cache_thres=None, mask=None, xyz_min=None, xyz_max=None):
super(MaskGrid, self).__init__()
if path is not None:
st = torch.load(path)
self.mask_cache_thres = mask_cache_thres
density = F.max_pool3d(st['model_state_dict']['density.grid'], kernel_size=3, padding=1, stride=1)
alpha = 1 - torch.exp(-F.softplus(density + st['model_state_dict']['act_shift']) * st['model_kwargs']['voxel_size_ratio'])
mask = (alpha >= self.mask_cache_thres).squeeze(0).squeeze(0)
xyz_min = torch.Tensor(st['model_kwargs']['xyz_min'])
xyz_max = torch.Tensor(st['model_kwargs']['xyz_max'])
else:
mask = mask.bool()
xyz_min = torch.Tensor(xyz_min)
xyz_max = torch.Tensor(xyz_max)
self.register_buffer('mask', mask)
xyz_len = xyz_max - xyz_min
self.register_buffer('xyz2ijk_scale', (torch.Tensor(list(mask.shape)) - 1) / xyz_len)
self.register_buffer('xyz2ijk_shift', -xyz_min * self.xyz2ijk_scale)
@torch.no_grad()
def forward(self, xyz):
'''Skip know freespace
@xyz: [..., 3] the xyz in global coordinate.
'''
shape = xyz.shape[:-1]
xyz = xyz.reshape(-1, 3)
mask = render_utils_cuda.maskcache_lookup(self.mask, xyz, self.xyz2ijk_scale, self.xyz2ijk_shift)
mask = mask.reshape(shape)
return mask
def extra_repr(self):
return f'mask.shape=list(self.mask.shape)'
def get_dense_grid_batch_processing(tensorf: TensoRFGrid):
'''
Expects the tensorf to be already on device and processes it on device batchwise.
Not transferring from cpu to avoid repeated transfers from cpu to device
Returns the grid which is also on device
'''
# we will construct it 3d column wise
# result_grid = torch.zeros([1, tensorf.channels, *tensorf.world_size], dtype=tensorf.xy_plane.dtype).cpu()
start_time = time.time()
# result_grid = torch.stack([torch.zeros([1, *tensorf.world_size], dtype=tensorf.x_vec.dtype).cpu() for _ in range(tensorf.channels)], dim=1)
# print(tensorf.channels, tensorf.world_size)
# result_grid = torch.zeros([1, tensorf.channels, *tensorf.world_size], dtype=tensorf.x_vec.dtype)
# debugging
result_grid = torch.zeros([1, 64, *tensorf.world_size], dtype=tensorf.x_vec.dtype)
print("Time taken for initializing the grid", time.time() - start_time)
# created y batches just in case if needed
batch_size_x = 35
batch_size_y = 35
batch_size_z = 35
for start_x in range(0, tensorf.world_size[0], batch_size_x):
end_x = start_x + batch_size_x
for start_y in range(0, tensorf.world_size[1], batch_size_y):
end_y = start_y + batch_size_y
for start_z in range(0, tensorf.world_size[2], batch_size_z):
end_z = start_z + batch_size_z
feat = torch.cat([
torch.einsum('rxy,rz->rxyz', tensorf.xy_plane[0, :, start_x:end_x, start_y:end_y], tensorf.z_vec[0,:,start_z:end_z,0]),
torch.einsum('rxz,ry->rxyz', tensorf.xz_plane[0, :, start_x:end_x, start_z:end_z], tensorf.y_vec[0,:,start_y:end_y,0]),
torch.einsum('ryz,rx->rxyz', tensorf.yz_plane[0, :, start_y:end_y, start_z:end_z], tensorf.x_vec[0,:,start_x:end_x,0]),
])
sub_grid = torch.einsum('rxyz,rc->cxyz', feat, tensorf.f_vec)[None]
result_grid[:, :, start_x:end_x, start_y:end_y, start_z:end_z] = sub_grid[:,:64,:,:,:]
return result_grid
@torch.no_grad()
def reconstruct_feature_grid(render_viewpoints_kwargs):
model = render_viewpoints_kwargs['model']
f_k0 = model.f_k0.cuda()
fg = get_dense_grid_batch_processing(f_k0).cuda()
fg_kmeans = fg.clone()
fg_kmeans = fg_kmeans.squeeze(0).permute(1, 2, 3, 0) # x, y, z, 64
fg_kmeans = fg_kmeans.reshape(-1, 64)
fg_kmeans = fg_kmeans.cpu().contiguous()
return torch.nn.functional.pad(fg, [1] * 6), fg_kmeans
if __name__ == "__main__":
with torch.no_grad():
print("Testing whether the outputted grid is the correct or not.")
tensorf = TensoRFGrid(64, torch.tensor([100, 100, 100]), 0, 1, {'n_comp': 64})
tensorf = tensorf.cuda()
start_time = time.time()
grid1 = tensorf.get_dense_grid().cpu()
print("Time taken for full gpu implementation", time.time() - start_time)
grid2 = get_dense_grid_batch_processing(tensorf)
assert grid1.isclose(grid2, atol=1e-7).all()
del grid1, grid2, tensorf
torch.cuda.empty_cache()
tensorf = TensoRFGrid(64, torch.tensor([320, 320, 320]), 0, 1, {'n_comp': 64})
tensorf = tensorf.cuda()
start_time = time.time()
grid = get_dense_grid_batch_processing(tensorf)
print("Time taken to reconstruct the grid", time.time() - start_time)
print("Program over.") |