Spaces:
Paused
Paused
yansong1616
commited on
Commit
•
b177539
1
Parent(s):
5ad334d
Upload 384 files
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- .gitattributes +38 -35
- .gitignore +132 -0
- .gitmodules +3 -0
- .idea/.gitignore +8 -0
- .idea/dust3r.iml +12 -0
- .idea/inspectionProfiles/profiles_settings.xml +6 -0
- .idea/misc.xml +7 -0
- .idea/modules.xml +8 -0
- .idea/other.xml +6 -0
- .idea/workspace.xml +653 -0
- LICENSE +7 -0
- NOTICE +13 -0
- README.md +12 -12
- SAM/__init__.py +15 -0
- SAM/__pycache__/__init__.cpython-310.pyc +0 -0
- SAM/__pycache__/automatic_mask_generator.cpython-310.pyc +0 -0
- SAM/__pycache__/build_sam.cpython-310.pyc +0 -0
- SAM/__pycache__/predictor.cpython-310.pyc +0 -0
- SAM/automatic_mask_generator.py +372 -0
- SAM/build_sam.py +107 -0
- SAM/modeling/__init__.py +11 -0
- SAM/modeling/__pycache__/__init__.cpython-310.pyc +0 -0
- SAM/modeling/__pycache__/common.cpython-310.pyc +0 -0
- SAM/modeling/__pycache__/image_encoder.cpython-310.pyc +0 -0
- SAM/modeling/__pycache__/mask_decoder.cpython-310.pyc +0 -0
- SAM/modeling/__pycache__/prompt_encoder.cpython-310.pyc +0 -0
- SAM/modeling/__pycache__/sam.cpython-310.pyc +0 -0
- SAM/modeling/__pycache__/transformer.cpython-310.pyc +0 -0
- SAM/modeling/common.py +43 -0
- SAM/modeling/image_encoder.py +395 -0
- SAM/modeling/mask_decoder.py +192 -0
- SAM/modeling/prompt_encoder.py +214 -0
- SAM/modeling/sam.py +187 -0
- SAM/modeling/transformer.py +240 -0
- SAM/predictor.py +269 -0
- SAM/utils/__pycache__/amg.cpython-310.pyc +0 -0
- SAM/utils/__pycache__/transforms.cpython-310.pyc +0 -0
- SAM/utils/amg.py +346 -0
- SAM/utils/transforms.py +102 -0
- __pycache__/evaluate.cpython-310.pyc +0 -0
- __pycache__/load_nvos.cpython-310.pyc +0 -0
- app.py +353 -0
- checkpoints/DUSt3R_ViTLarge_BaseDecoder_512_dpt.pth +3 -0
- checkpoints/sam_vit_b_01ec64.pth +3 -0
- configs/default.py +119 -0
- configs/lerf/book_store.py +16 -0
- configs/lerf/bouquet.py +16 -0
- configs/lerf/donuts.py +16 -0
- configs/lerf/dozer_nerfgun_waldo.py +16 -0
- configs/lerf/espresso.py +16 -0
.gitattributes
CHANGED
@@ -1,35 +1,38 @@
|
|
1 |
-
*.7z filter=lfs diff=lfs merge=lfs -text
|
2 |
-
*.arrow filter=lfs diff=lfs merge=lfs -text
|
3 |
-
*.bin filter=lfs diff=lfs merge=lfs -text
|
4 |
-
*.bz2 filter=lfs diff=lfs merge=lfs -text
|
5 |
-
*.ckpt filter=lfs diff=lfs merge=lfs -text
|
6 |
-
*.ftz filter=lfs diff=lfs merge=lfs -text
|
7 |
-
*.gz filter=lfs diff=lfs merge=lfs -text
|
8 |
-
*.h5 filter=lfs diff=lfs merge=lfs -text
|
9 |
-
*.joblib filter=lfs diff=lfs merge=lfs -text
|
10 |
-
*.lfs.* filter=lfs diff=lfs merge=lfs -text
|
11 |
-
*.mlmodel filter=lfs diff=lfs merge=lfs -text
|
12 |
-
*.model filter=lfs diff=lfs merge=lfs -text
|
13 |
-
*.msgpack filter=lfs diff=lfs merge=lfs -text
|
14 |
-
*.npy filter=lfs diff=lfs merge=lfs -text
|
15 |
-
*.npz filter=lfs diff=lfs merge=lfs -text
|
16 |
-
*.onnx filter=lfs diff=lfs merge=lfs -text
|
17 |
-
*.ot filter=lfs diff=lfs merge=lfs -text
|
18 |
-
*.parquet filter=lfs diff=lfs merge=lfs -text
|
19 |
-
*.pb filter=lfs diff=lfs merge=lfs -text
|
20 |
-
*.pickle filter=lfs diff=lfs merge=lfs -text
|
21 |
-
*.pkl filter=lfs diff=lfs merge=lfs -text
|
22 |
-
*.pt filter=lfs diff=lfs merge=lfs -text
|
23 |
-
*.pth filter=lfs diff=lfs merge=lfs -text
|
24 |
-
*.rar filter=lfs diff=lfs merge=lfs -text
|
25 |
-
*.safetensors filter=lfs diff=lfs merge=lfs -text
|
26 |
-
saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
27 |
-
*.tar.* filter=lfs diff=lfs merge=lfs -text
|
28 |
-
*.tar filter=lfs diff=lfs merge=lfs -text
|
29 |
-
*.tflite filter=lfs diff=lfs merge=lfs -text
|
30 |
-
*.tgz filter=lfs diff=lfs merge=lfs -text
|
31 |
-
*.wasm filter=lfs diff=lfs merge=lfs -text
|
32 |
-
*.xz filter=lfs diff=lfs merge=lfs -text
|
33 |
-
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
-
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
-
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
|
|
1 |
+
*.7z filter=lfs diff=lfs merge=lfs -text
|
2 |
+
*.arrow filter=lfs diff=lfs merge=lfs -text
|
3 |
+
*.bin filter=lfs diff=lfs merge=lfs -text
|
4 |
+
*.bz2 filter=lfs diff=lfs merge=lfs -text
|
5 |
+
*.ckpt filter=lfs diff=lfs merge=lfs -text
|
6 |
+
*.ftz filter=lfs diff=lfs merge=lfs -text
|
7 |
+
*.gz filter=lfs diff=lfs merge=lfs -text
|
8 |
+
*.h5 filter=lfs diff=lfs merge=lfs -text
|
9 |
+
*.joblib filter=lfs diff=lfs merge=lfs -text
|
10 |
+
*.lfs.* filter=lfs diff=lfs merge=lfs -text
|
11 |
+
*.mlmodel filter=lfs diff=lfs merge=lfs -text
|
12 |
+
*.model filter=lfs diff=lfs merge=lfs -text
|
13 |
+
*.msgpack filter=lfs diff=lfs merge=lfs -text
|
14 |
+
*.npy filter=lfs diff=lfs merge=lfs -text
|
15 |
+
*.npz filter=lfs diff=lfs merge=lfs -text
|
16 |
+
*.onnx filter=lfs diff=lfs merge=lfs -text
|
17 |
+
*.ot filter=lfs diff=lfs merge=lfs -text
|
18 |
+
*.parquet filter=lfs diff=lfs merge=lfs -text
|
19 |
+
*.pb filter=lfs diff=lfs merge=lfs -text
|
20 |
+
*.pickle filter=lfs diff=lfs merge=lfs -text
|
21 |
+
*.pkl filter=lfs diff=lfs merge=lfs -text
|
22 |
+
*.pt filter=lfs diff=lfs merge=lfs -text
|
23 |
+
*.pth filter=lfs diff=lfs merge=lfs -text
|
24 |
+
*.rar filter=lfs diff=lfs merge=lfs -text
|
25 |
+
*.safetensors filter=lfs diff=lfs merge=lfs -text
|
26 |
+
saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
27 |
+
*.tar.* filter=lfs diff=lfs merge=lfs -text
|
28 |
+
*.tar filter=lfs diff=lfs merge=lfs -text
|
29 |
+
*.tflite filter=lfs diff=lfs merge=lfs -text
|
30 |
+
*.tgz filter=lfs diff=lfs merge=lfs -text
|
31 |
+
*.wasm filter=lfs diff=lfs merge=lfs -text
|
32 |
+
*.xz filter=lfs diff=lfs merge=lfs -text
|
33 |
+
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
+
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
+
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
+
output/llff(sanerf-hq)/fenceflower/point_cloud_projection.png filter=lfs diff=lfs merge=lfs -text
|
37 |
+
output/llff(sanerf-hq)/mattcecsit/point_cloud_projection.png filter=lfs diff=lfs merge=lfs -text
|
38 |
+
output/llff(sanerf-hq)/mattwrite/point_cloud_projection.png filter=lfs diff=lfs merge=lfs -text
|
.gitignore
ADDED
@@ -0,0 +1,132 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
data/
|
2 |
+
checkpoints/
|
3 |
+
|
4 |
+
# Byte-compiled / optimized / DLL files
|
5 |
+
__pycache__/
|
6 |
+
*.py[cod]
|
7 |
+
*$py.class
|
8 |
+
|
9 |
+
# C extensions
|
10 |
+
*.so
|
11 |
+
|
12 |
+
# Distribution / packaging
|
13 |
+
.Python
|
14 |
+
build/
|
15 |
+
develop-eggs/
|
16 |
+
dist/
|
17 |
+
downloads/
|
18 |
+
eggs/
|
19 |
+
.eggs/
|
20 |
+
lib/
|
21 |
+
lib64/
|
22 |
+
parts/
|
23 |
+
sdist/
|
24 |
+
var/
|
25 |
+
wheels/
|
26 |
+
pip-wheel-metadata/
|
27 |
+
share/python-wheels/
|
28 |
+
*.egg-info/
|
29 |
+
.installed.cfg
|
30 |
+
*.egg
|
31 |
+
MANIFEST
|
32 |
+
|
33 |
+
# PyInstaller
|
34 |
+
# Usually these files are written by a python script from a template
|
35 |
+
# before PyInstaller builds the exe, so as to inject date/other infos into it.
|
36 |
+
*.manifest
|
37 |
+
*.spec
|
38 |
+
|
39 |
+
# Installer logs
|
40 |
+
pip-log.txt
|
41 |
+
pip-delete-this-directory.txt
|
42 |
+
|
43 |
+
# Unit test / coverage reports
|
44 |
+
htmlcov/
|
45 |
+
.tox/
|
46 |
+
.nox/
|
47 |
+
.coverage
|
48 |
+
.coverage.*
|
49 |
+
.cache
|
50 |
+
nosetests.xml
|
51 |
+
coverage.xml
|
52 |
+
*.cover
|
53 |
+
*.py,cover
|
54 |
+
.hypothesis/
|
55 |
+
.pytest_cache/
|
56 |
+
|
57 |
+
# Translations
|
58 |
+
*.mo
|
59 |
+
*.pot
|
60 |
+
|
61 |
+
# Django stuff:
|
62 |
+
*.log
|
63 |
+
local_settings.py
|
64 |
+
db.sqlite3
|
65 |
+
db.sqlite3-journal
|
66 |
+
|
67 |
+
# Flask stuff:
|
68 |
+
instance/
|
69 |
+
.webassets-cache
|
70 |
+
|
71 |
+
# Scrapy stuff:
|
72 |
+
.scrapy
|
73 |
+
|
74 |
+
# Sphinx documentation
|
75 |
+
docs/_build/
|
76 |
+
|
77 |
+
# PyBuilder
|
78 |
+
target/
|
79 |
+
|
80 |
+
# Jupyter Notebook
|
81 |
+
.ipynb_checkpoints
|
82 |
+
|
83 |
+
# IPython
|
84 |
+
profile_default/
|
85 |
+
ipython_config.py
|
86 |
+
|
87 |
+
# pyenv
|
88 |
+
.python-version
|
89 |
+
|
90 |
+
# pipenv
|
91 |
+
# According to pypa/pipenv#598, it is recommended to include Pipfile.lock in version control.
|
92 |
+
# However, in case of collaboration, if having platform-specific dependencies or dependencies
|
93 |
+
# having no cross-platform support, pipenv may install dependencies that don't work, or not
|
94 |
+
# install all needed dependencies.
|
95 |
+
#Pipfile.lock
|
96 |
+
|
97 |
+
# PEP 582; used by e.g. github.com/David-OConnor/pyflow
|
98 |
+
__pypackages__/
|
99 |
+
|
100 |
+
# Celery stuff
|
101 |
+
celerybeat-schedule
|
102 |
+
celerybeat.pid
|
103 |
+
|
104 |
+
# SageMath parsed files
|
105 |
+
*.sage.py
|
106 |
+
|
107 |
+
# Environments
|
108 |
+
.env
|
109 |
+
.venv
|
110 |
+
env/
|
111 |
+
venv/
|
112 |
+
ENV/
|
113 |
+
env.bak/
|
114 |
+
venv.bak/
|
115 |
+
|
116 |
+
# Spyder project settings
|
117 |
+
.spyderproject
|
118 |
+
.spyproject
|
119 |
+
|
120 |
+
# Rope project settings
|
121 |
+
.ropeproject
|
122 |
+
|
123 |
+
# mkdocs documentation
|
124 |
+
/site
|
125 |
+
|
126 |
+
# mypy
|
127 |
+
.mypy_cache/
|
128 |
+
.dmypy.json
|
129 |
+
dmypy.json
|
130 |
+
|
131 |
+
# Pyre type checker
|
132 |
+
.pyre/
|
.gitmodules
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
[submodule "croco"]
|
2 |
+
path = croco
|
3 |
+
url = https://github.com/naver/croco
|
.idea/.gitignore
ADDED
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Default ignored files
|
2 |
+
/shelf/
|
3 |
+
/workspace.xml
|
4 |
+
# Editor-based HTTP Client requests
|
5 |
+
/httpRequests/
|
6 |
+
# Datasource local storage ignored files
|
7 |
+
/dataSources/
|
8 |
+
/dataSources.local.xml
|
.idea/dust3r.iml
ADDED
@@ -0,0 +1,12 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
<?xml version="1.0" encoding="UTF-8"?>
|
2 |
+
<module type="PYTHON_MODULE" version="4">
|
3 |
+
<component name="NewModuleRootManager">
|
4 |
+
<content url="file://$MODULE_DIR$" />
|
5 |
+
<orderEntry type="jdk" jdkName="dust3r" jdkType="Python SDK" />
|
6 |
+
<orderEntry type="sourceFolder" forTests="false" />
|
7 |
+
</component>
|
8 |
+
<component name="PyDocumentationSettings">
|
9 |
+
<option name="format" value="PLAIN" />
|
10 |
+
<option name="myDocStringFormat" value="Plain" />
|
11 |
+
</component>
|
12 |
+
</module>
|
.idea/inspectionProfiles/profiles_settings.xml
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
<component name="InspectionProjectProfileManager">
|
2 |
+
<settings>
|
3 |
+
<option name="USE_PROJECT_PROFILE" value="false" />
|
4 |
+
<version value="1.0" />
|
5 |
+
</settings>
|
6 |
+
</component>
|
.idea/misc.xml
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
<?xml version="1.0" encoding="UTF-8"?>
|
2 |
+
<project version="4">
|
3 |
+
<component name="Black">
|
4 |
+
<option name="sdkName" value="edgesam" />
|
5 |
+
</component>
|
6 |
+
<component name="ProjectRootManager" version="2" project-jdk-name="dust3r" project-jdk-type="Python SDK" />
|
7 |
+
</project>
|
.idea/modules.xml
ADDED
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
<?xml version="1.0" encoding="UTF-8"?>
|
2 |
+
<project version="4">
|
3 |
+
<component name="ProjectModuleManager">
|
4 |
+
<modules>
|
5 |
+
<module fileurl="file://$PROJECT_DIR$/.idea/dust3r.iml" filepath="$PROJECT_DIR$/.idea/dust3r.iml" />
|
6 |
+
</modules>
|
7 |
+
</component>
|
8 |
+
</project>
|
.idea/other.xml
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
<?xml version="1.0" encoding="UTF-8"?>
|
2 |
+
<project version="4">
|
3 |
+
<component name="PySciProjectComponent">
|
4 |
+
<option name="PY_INTERACTIVE_PLOTS_SUGGESTED" value="true" />
|
5 |
+
</component>
|
6 |
+
</project>
|
.idea/workspace.xml
ADDED
@@ -0,0 +1,653 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
<?xml version="1.0" encoding="UTF-8"?>
|
2 |
+
<project version="4">
|
3 |
+
<component name="AutoImportSettings">
|
4 |
+
<option name="autoReloadType" value="SELECTIVE" />
|
5 |
+
</component>
|
6 |
+
<component name="ChangeListManager">
|
7 |
+
<list default="true" id="de0dddb6-4a99-4847-9050-a2cb006d71c9" name="Changes" comment="" />
|
8 |
+
<option name="SHOW_DIALOG" value="false" />
|
9 |
+
<option name="HIGHLIGHT_CONFLICTS" value="true" />
|
10 |
+
<option name="HIGHLIGHT_NON_ACTIVE_CHANGELIST" value="false" />
|
11 |
+
<option name="LAST_RESOLUTION" value="IGNORE" />
|
12 |
+
</component>
|
13 |
+
<component name="FileTemplateManagerImpl">
|
14 |
+
<option name="RECENT_TEMPLATES">
|
15 |
+
<list>
|
16 |
+
<option value="Python Script" />
|
17 |
+
</list>
|
18 |
+
</option>
|
19 |
+
</component>
|
20 |
+
<component name="MarkdownSettingsMigration">
|
21 |
+
<option name="stateVersion" value="1" />
|
22 |
+
</component>
|
23 |
+
<component name="ProjectColorInfo">{
|
24 |
+
"associatedIndex": 6
|
25 |
+
}</component>
|
26 |
+
<component name="ProjectId" id="2fAGUbZMWEGJzrHYLuaOE0replo" />
|
27 |
+
<component name="ProjectViewState">
|
28 |
+
<option name="hideEmptyMiddlePackages" value="true" />
|
29 |
+
<option name="showLibraryContents" value="true" />
|
30 |
+
</component>
|
31 |
+
<component name="PropertiesComponent">{
|
32 |
+
"keyToString": {
|
33 |
+
"Python.base_opt.executor": "Debug",
|
34 |
+
"Python.demo.executor": "Debug",
|
35 |
+
"Python.evaluate.executor": "Run",
|
36 |
+
"Python.gys_util.executor": "Run",
|
37 |
+
"Python.load_nvos.executor": "Debug",
|
38 |
+
"Python.prepare_prompts.executor": "Debug",
|
39 |
+
"Python.segment_eval_mask.executor": "Run",
|
40 |
+
"Python.test_vis.executor": "Run",
|
41 |
+
"RunOnceActivity.OpenProjectViewOnStart": "true",
|
42 |
+
"RunOnceActivity.ShowReadmeOnStart": "true",
|
43 |
+
"last_opened_file_path": "D:/XMU/mac/hujie/3D/DUSt3R/dust3r/data/nerf_llff_data(NVOS-all)/orchids",
|
44 |
+
"node.js.detected.package.eslint": "true",
|
45 |
+
"node.js.detected.package.tslint": "true",
|
46 |
+
"node.js.selected.package.eslint": "(autodetect)",
|
47 |
+
"node.js.selected.package.tslint": "(autodetect)",
|
48 |
+
"nodejs_package_manager_path": "npm",
|
49 |
+
"settings.editor.selected.configurable": "editor.preferences.fonts.default",
|
50 |
+
"vue.rearranger.settings.migration": "true"
|
51 |
+
}
|
52 |
+
}</component>
|
53 |
+
<component name="RecentsManager">
|
54 |
+
<key name="CopyFile.RECENT_KEYS">
|
55 |
+
<recent name="D:\XMU\mac\hujie\3D\DUSt3R\dust3r\data\nerf_llff_data(NVOS-all)\orchids" />
|
56 |
+
<recent name="D:\XMU\mac\hujie\3D\DUSt3R\dust3r\data\nerf_llff_data(NVOS-all)\leaves" />
|
57 |
+
<recent name="D:\XMU\mac\hujie\3D\DUSt3R\dust3r\data\nerf_llff_data(NVOS-all)\fortress" />
|
58 |
+
<recent name="D:\XMU\mac\hujie\3D\DUSt3R\dust3r\data\nerf_llff_data(NVOS-all)\flower" />
|
59 |
+
<recent name="D:\XMU\mac\hujie\3D\DUSt3R\dust3r\data\nerf_llff_data(NVOS-all)\flower\images_8" />
|
60 |
+
</key>
|
61 |
+
<key name="MoveFile.RECENT_KEYS">
|
62 |
+
<recent name="D:\XMU\mac\hujie\3D\DUSt3R\dust3r\data\nerf_llff_data(NVOS-all)\masks\horns_center" />
|
63 |
+
<recent name="D:\XMU\mac\hujie\3D\DUSt3R\dust3r\data\nerf_llff_data(NVOS)\masks\horns_center" />
|
64 |
+
</key>
|
65 |
+
</component>
|
66 |
+
<component name="RunManager" selected="Python.segment_eval_mask">
|
67 |
+
<configuration name="base_opt" type="PythonConfigurationType" factoryName="Python" temporary="true" nameIsGenerated="true">
|
68 |
+
<module name="dust3r" />
|
69 |
+
<option name="ENV_FILES" value="" />
|
70 |
+
<option name="INTERPRETER_OPTIONS" value="" />
|
71 |
+
<option name="PARENT_ENVS" value="true" />
|
72 |
+
<envs>
|
73 |
+
<env name="PYTHONUNBUFFERED" value="1" />
|
74 |
+
</envs>
|
75 |
+
<option name="SDK_HOME" value="" />
|
76 |
+
<option name="WORKING_DIRECTORY" value="$PROJECT_DIR$/dust3r/cloud_opt" />
|
77 |
+
<option name="IS_MODULE_SDK" value="true" />
|
78 |
+
<option name="ADD_CONTENT_ROOTS" value="true" />
|
79 |
+
<option name="ADD_SOURCE_ROOTS" value="true" />
|
80 |
+
<EXTENSION ID="PythonCoverageRunConfigurationExtension" runner="coverage.py" />
|
81 |
+
<option name="SCRIPT_NAME" value="$PROJECT_DIR$/dust3r/cloud_opt/base_opt.py" />
|
82 |
+
<option name="PARAMETERS" value="" />
|
83 |
+
<option name="SHOW_COMMAND_LINE" value="false" />
|
84 |
+
<option name="EMULATE_TERMINAL" value="false" />
|
85 |
+
<option name="MODULE_MODE" value="false" />
|
86 |
+
<option name="REDIRECT_INPUT" value="false" />
|
87 |
+
<option name="INPUT_FILE" value="" />
|
88 |
+
<method v="2" />
|
89 |
+
</configuration>
|
90 |
+
<configuration name="evaluate" type="PythonConfigurationType" factoryName="Python" temporary="true" nameIsGenerated="true">
|
91 |
+
<module name="dust3r" />
|
92 |
+
<option name="ENV_FILES" value="" />
|
93 |
+
<option name="INTERPRETER_OPTIONS" value="" />
|
94 |
+
<option name="PARENT_ENVS" value="true" />
|
95 |
+
<envs>
|
96 |
+
<env name="PYTHONUNBUFFERED" value="1" />
|
97 |
+
</envs>
|
98 |
+
<option name="SDK_HOME" value="" />
|
99 |
+
<option name="WORKING_DIRECTORY" value="$PROJECT_DIR$" />
|
100 |
+
<option name="IS_MODULE_SDK" value="true" />
|
101 |
+
<option name="ADD_CONTENT_ROOTS" value="true" />
|
102 |
+
<option name="ADD_SOURCE_ROOTS" value="true" />
|
103 |
+
<EXTENSION ID="PythonCoverageRunConfigurationExtension" runner="coverage.py" />
|
104 |
+
<option name="SCRIPT_NAME" value="$PROJECT_DIR$/evaluate.py" />
|
105 |
+
<option name="PARAMETERS" value="" />
|
106 |
+
<option name="SHOW_COMMAND_LINE" value="false" />
|
107 |
+
<option name="EMULATE_TERMINAL" value="false" />
|
108 |
+
<option name="MODULE_MODE" value="false" />
|
109 |
+
<option name="REDIRECT_INPUT" value="false" />
|
110 |
+
<option name="INPUT_FILE" value="" />
|
111 |
+
<method v="2" />
|
112 |
+
</configuration>
|
113 |
+
<configuration name="gys_util" type="PythonConfigurationType" factoryName="Python" temporary="true" nameIsGenerated="true">
|
114 |
+
<module name="dust3r" />
|
115 |
+
<option name="ENV_FILES" value="" />
|
116 |
+
<option name="INTERPRETER_OPTIONS" value="" />
|
117 |
+
<option name="PARENT_ENVS" value="true" />
|
118 |
+
<envs>
|
119 |
+
<env name="PYTHONUNBUFFERED" value="1" />
|
120 |
+
</envs>
|
121 |
+
<option name="SDK_HOME" value="" />
|
122 |
+
<option name="WORKING_DIRECTORY" value="$PROJECT_DIR$" />
|
123 |
+
<option name="IS_MODULE_SDK" value="true" />
|
124 |
+
<option name="ADD_CONTENT_ROOTS" value="true" />
|
125 |
+
<option name="ADD_SOURCE_ROOTS" value="true" />
|
126 |
+
<EXTENSION ID="PythonCoverageRunConfigurationExtension" runner="coverage.py" />
|
127 |
+
<option name="SCRIPT_NAME" value="$PROJECT_DIR$/gys_util.py" />
|
128 |
+
<option name="PARAMETERS" value="" />
|
129 |
+
<option name="SHOW_COMMAND_LINE" value="false" />
|
130 |
+
<option name="EMULATE_TERMINAL" value="false" />
|
131 |
+
<option name="MODULE_MODE" value="false" />
|
132 |
+
<option name="REDIRECT_INPUT" value="false" />
|
133 |
+
<option name="INPUT_FILE" value="" />
|
134 |
+
<method v="2" />
|
135 |
+
</configuration>
|
136 |
+
<configuration name="load_nvos" type="PythonConfigurationType" factoryName="Python" temporary="true" nameIsGenerated="true">
|
137 |
+
<module name="dust3r" />
|
138 |
+
<option name="ENV_FILES" value="" />
|
139 |
+
<option name="INTERPRETER_OPTIONS" value="" />
|
140 |
+
<option name="PARENT_ENVS" value="true" />
|
141 |
+
<envs>
|
142 |
+
<env name="PYTHONUNBUFFERED" value="1" />
|
143 |
+
</envs>
|
144 |
+
<option name="SDK_HOME" value="" />
|
145 |
+
<option name="WORKING_DIRECTORY" value="$PROJECT_DIR$" />
|
146 |
+
<option name="IS_MODULE_SDK" value="true" />
|
147 |
+
<option name="ADD_CONTENT_ROOTS" value="true" />
|
148 |
+
<option name="ADD_SOURCE_ROOTS" value="true" />
|
149 |
+
<EXTENSION ID="PythonCoverageRunConfigurationExtension" runner="coverage.py" />
|
150 |
+
<option name="SCRIPT_NAME" value="$PROJECT_DIR$/load_nvos.py" />
|
151 |
+
<option name="PARAMETERS" value="" />
|
152 |
+
<option name="SHOW_COMMAND_LINE" value="false" />
|
153 |
+
<option name="EMULATE_TERMINAL" value="false" />
|
154 |
+
<option name="MODULE_MODE" value="false" />
|
155 |
+
<option name="REDIRECT_INPUT" value="false" />
|
156 |
+
<option name="INPUT_FILE" value="" />
|
157 |
+
<method v="2" />
|
158 |
+
</configuration>
|
159 |
+
<configuration name="segment_eval_mask" type="PythonConfigurationType" factoryName="Python" temporary="true" nameIsGenerated="true">
|
160 |
+
<module name="dust3r" />
|
161 |
+
<option name="ENV_FILES" value="" />
|
162 |
+
<option name="INTERPRETER_OPTIONS" value="" />
|
163 |
+
<option name="PARENT_ENVS" value="true" />
|
164 |
+
<envs>
|
165 |
+
<env name="PYTHONUNBUFFERED" value="1" />
|
166 |
+
</envs>
|
167 |
+
<option name="SDK_HOME" value="" />
|
168 |
+
<option name="WORKING_DIRECTORY" value="$PROJECT_DIR$" />
|
169 |
+
<option name="IS_MODULE_SDK" value="true" />
|
170 |
+
<option name="ADD_CONTENT_ROOTS" value="true" />
|
171 |
+
<option name="ADD_SOURCE_ROOTS" value="true" />
|
172 |
+
<EXTENSION ID="PythonCoverageRunConfigurationExtension" runner="coverage.py" />
|
173 |
+
<option name="SCRIPT_NAME" value="$PROJECT_DIR$/segment_eval_mask.py" />
|
174 |
+
<option name="PARAMETERS" value="" />
|
175 |
+
<option name="SHOW_COMMAND_LINE" value="false" />
|
176 |
+
<option name="EMULATE_TERMINAL" value="false" />
|
177 |
+
<option name="MODULE_MODE" value="false" />
|
178 |
+
<option name="REDIRECT_INPUT" value="false" />
|
179 |
+
<option name="INPUT_FILE" value="" />
|
180 |
+
<method v="2" />
|
181 |
+
</configuration>
|
182 |
+
<list>
|
183 |
+
<item itemvalue="Python.base_opt" />
|
184 |
+
<item itemvalue="Python.evaluate" />
|
185 |
+
<item itemvalue="Python.gys_util" />
|
186 |
+
<item itemvalue="Python.load_nvos" />
|
187 |
+
<item itemvalue="Python.segment_eval_mask" />
|
188 |
+
</list>
|
189 |
+
<recent_temporary>
|
190 |
+
<list>
|
191 |
+
<item itemvalue="Python.segment_eval_mask" />
|
192 |
+
<item itemvalue="Python.gys_util" />
|
193 |
+
<item itemvalue="Python.base_opt" />
|
194 |
+
<item itemvalue="Python.load_nvos" />
|
195 |
+
<item itemvalue="Python.evaluate" />
|
196 |
+
</list>
|
197 |
+
</recent_temporary>
|
198 |
+
</component>
|
199 |
+
<component name="SharedIndexes">
|
200 |
+
<attachedChunks>
|
201 |
+
<set>
|
202 |
+
<option value="bundled-python-sdk-d68999036c7f-b11f5e8da5ad-com.jetbrains.pycharm.pro.sharedIndexes.bundled-PY-233.14475.56" />
|
203 |
+
</set>
|
204 |
+
</attachedChunks>
|
205 |
+
</component>
|
206 |
+
<component name="SpellCheckerSettings" RuntimeDictionaries="0" Folders="0" CustomDictionaries="0" DefaultDictionary="application-level" UseSingleDictionary="true" transferred="true" />
|
207 |
+
<component name="TaskManager">
|
208 |
+
<task active="true" id="Default" summary="Default task">
|
209 |
+
<changelist id="de0dddb6-4a99-4847-9050-a2cb006d71c9" name="Changes" comment="" />
|
210 |
+
<created>1713236486096</created>
|
211 |
+
<option name="number" value="Default" />
|
212 |
+
<option name="presentableId" value="Default" />
|
213 |
+
<updated>1713236486096</updated>
|
214 |
+
<workItem from="1713236487157" duration="10677000" />
|
215 |
+
<workItem from="1713322792937" duration="2998000" />
|
216 |
+
<workItem from="1713327850893" duration="7179000" />
|
217 |
+
<workItem from="1713345425711" duration="3092000" />
|
218 |
+
<workItem from="1713365007655" duration="3000" />
|
219 |
+
<workItem from="1713367330362" duration="10000" />
|
220 |
+
<workItem from="1713424119618" duration="7824000" />
|
221 |
+
<workItem from="1713490936554" duration="2000" />
|
222 |
+
<workItem from="1713505652781" duration="4699000" />
|
223 |
+
<workItem from="1713663410571" duration="2000" />
|
224 |
+
<workItem from="1713692836014" duration="2000" />
|
225 |
+
<workItem from="1713706421213" duration="483000" />
|
226 |
+
<workItem from="1713760410928" duration="1449000" />
|
227 |
+
<workItem from="1713859656888" duration="121000" />
|
228 |
+
<workItem from="1713868202296" duration="766000" />
|
229 |
+
<workItem from="1713871959150" duration="9000" />
|
230 |
+
<workItem from="1714029659735" duration="12549000" />
|
231 |
+
<workItem from="1714107476497" duration="2510000" />
|
232 |
+
<workItem from="1714111340455" duration="1140000" />
|
233 |
+
<workItem from="1714112654480" duration="4607000" />
|
234 |
+
<workItem from="1714306019181" duration="6300000" />
|
235 |
+
<workItem from="1714374776625" duration="9143000" />
|
236 |
+
<workItem from="1714477007344" duration="1203000" />
|
237 |
+
<workItem from="1714977472055" duration="12684000" />
|
238 |
+
<workItem from="1715235695003" duration="6444000" />
|
239 |
+
<workItem from="1715266491201" duration="657000" />
|
240 |
+
<workItem from="1715322636502" duration="14461000" />
|
241 |
+
<workItem from="1715407622615" duration="5364000" />
|
242 |
+
<workItem from="1715496542428" duration="15485000" />
|
243 |
+
<workItem from="1715578333845" duration="3525000" />
|
244 |
+
<workItem from="1715654635430" duration="19165000" />
|
245 |
+
<workItem from="1715737090799" duration="8221000" />
|
246 |
+
<workItem from="1715825644950" duration="25707000" />
|
247 |
+
<workItem from="1715912343385" duration="771000" />
|
248 |
+
<workItem from="1715913133797" duration="6272000" />
|
249 |
+
<workItem from="1715959257185" duration="1615000" />
|
250 |
+
<workItem from="1716202913497" duration="1828000" />
|
251 |
+
<workItem from="1716518387871" duration="58000" />
|
252 |
+
<workItem from="1716625270304" duration="311000" />
|
253 |
+
<workItem from="1717227431906" duration="27000" />
|
254 |
+
<workItem from="1717554542796" duration="3744000" />
|
255 |
+
<workItem from="1717639168925" duration="599000" />
|
256 |
+
<workItem from="1717723619398" duration="15918000" />
|
257 |
+
<workItem from="1717815585723" duration="5160000" />
|
258 |
+
<workItem from="1717901397527" duration="3653000" />
|
259 |
+
<workItem from="1718069302578" duration="604000" />
|
260 |
+
<workItem from="1719749124178" duration="2000" />
|
261 |
+
<workItem from="1721024783860" duration="3000" />
|
262 |
+
<workItem from="1721484421877" duration="939000" />
|
263 |
+
<workItem from="1721528085975" duration="6199000" />
|
264 |
+
<workItem from="1721613881635" duration="3849000" />
|
265 |
+
<workItem from="1722040494765" duration="13950000" />
|
266 |
+
<workItem from="1722062512246" duration="18586000" />
|
267 |
+
<workItem from="1722129426856" duration="17038000" />
|
268 |
+
<workItem from="1722215818784" duration="16344000" />
|
269 |
+
<workItem from="1722304780775" duration="18623000" />
|
270 |
+
<workItem from="1722407231490" duration="6609000" />
|
271 |
+
<workItem from="1722472667237" duration="5193000" />
|
272 |
+
<workItem from="1722657508626" duration="597000" />
|
273 |
+
<workItem from="1723690716890" duration="9000" />
|
274 |
+
<workItem from="1723793077905" duration="5340000" />
|
275 |
+
<workItem from="1723806823176" duration="6000" />
|
276 |
+
</task>
|
277 |
+
<servers />
|
278 |
+
</component>
|
279 |
+
<component name="TypeScriptGeneratedFilesManager">
|
280 |
+
<option name="version" value="3" />
|
281 |
+
</component>
|
282 |
+
<component name="XDebuggerManager">
|
283 |
+
<breakpoint-manager>
|
284 |
+
<breakpoints>
|
285 |
+
<line-breakpoint enabled="true" suspend="THREAD" type="python-line">
|
286 |
+
<url>file://$PROJECT_DIR$/demo.py</url>
|
287 |
+
<line>352</line>
|
288 |
+
<option name="timeStamp" value="21" />
|
289 |
+
</line-breakpoint>
|
290 |
+
<line-breakpoint enabled="true" suspend="THREAD" type="python-line">
|
291 |
+
<url>file://$PROJECT_DIR$/demo.py</url>
|
292 |
+
<line>350</line>
|
293 |
+
<option name="timeStamp" value="22" />
|
294 |
+
</line-breakpoint>
|
295 |
+
<line-breakpoint enabled="true" suspend="THREAD" type="python-line">
|
296 |
+
<url>file://$PROJECT_DIR$/segment_eval_mask.py</url>
|
297 |
+
<line>49</line>
|
298 |
+
<option name="timeStamp" value="62" />
|
299 |
+
</line-breakpoint>
|
300 |
+
<line-breakpoint enabled="true" suspend="THREAD" type="python-line">
|
301 |
+
<url>file://$PROJECT_DIR$/dust3r/cloud_opt/base_opt.py</url>
|
302 |
+
<line>347</line>
|
303 |
+
<option name="timeStamp" value="64" />
|
304 |
+
</line-breakpoint>
|
305 |
+
<line-breakpoint enabled="true" suspend="THREAD" type="python-line">
|
306 |
+
<url>file://$PROJECT_DIR$/segment_eval_mask.py</url>
|
307 |
+
<line>39</line>
|
308 |
+
<option name="timeStamp" value="65" />
|
309 |
+
</line-breakpoint>
|
310 |
+
<line-breakpoint enabled="true" suspend="THREAD" type="python-line">
|
311 |
+
<url>file://$PROJECT_DIR$/dust3r/cloud_opt/base_opt.py</url>
|
312 |
+
<line>307</line>
|
313 |
+
<option name="timeStamp" value="66" />
|
314 |
+
</line-breakpoint>
|
315 |
+
<line-breakpoint enabled="true" suspend="THREAD" type="python-line">
|
316 |
+
<url>file://$PROJECT_DIR$/dust3r/cloud_opt/base_opt.py</url>
|
317 |
+
<line>301</line>
|
318 |
+
<option name="timeStamp" value="67" />
|
319 |
+
</line-breakpoint>
|
320 |
+
<line-breakpoint enabled="true" suspend="THREAD" type="python-line">
|
321 |
+
<url>file://$PROJECT_DIR$/segment_eval_mask.py</url>
|
322 |
+
<line>64</line>
|
323 |
+
<option name="timeStamp" value="114" />
|
324 |
+
</line-breakpoint>
|
325 |
+
<line-breakpoint enabled="true" suspend="THREAD" type="python-line">
|
326 |
+
<url>file://$PROJECT_DIR$/segment_eval_mask.py</url>
|
327 |
+
<line>107</line>
|
328 |
+
<option name="timeStamp" value="115" />
|
329 |
+
</line-breakpoint>
|
330 |
+
<line-breakpoint enabled="true" suspend="THREAD" type="python-line">
|
331 |
+
<url>file://$PROJECT_DIR$/segment_eval_mask.py</url>
|
332 |
+
<line>106</line>
|
333 |
+
<option name="timeStamp" value="116" />
|
334 |
+
</line-breakpoint>
|
335 |
+
<line-breakpoint enabled="true" suspend="THREAD" type="python-line">
|
336 |
+
<url>file://$PROJECT_DIR$/dust3r/cloud_opt/init_im_poses.py</url>
|
337 |
+
<line>204</line>
|
338 |
+
<option name="timeStamp" value="149" />
|
339 |
+
</line-breakpoint>
|
340 |
+
<line-breakpoint enabled="true" suspend="THREAD" type="python-line">
|
341 |
+
<url>file://$PROJECT_DIR$/dust3r/cloud_opt/init_im_poses.py</url>
|
342 |
+
<line>75</line>
|
343 |
+
<option name="timeStamp" value="164" />
|
344 |
+
</line-breakpoint>
|
345 |
+
<line-breakpoint enabled="true" suspend="THREAD" type="python-line">
|
346 |
+
<url>file://$PROJECT_DIR$/dust3r/cloud_opt/init_im_poses.py</url>
|
347 |
+
<line>187</line>
|
348 |
+
<option name="timeStamp" value="378" />
|
349 |
+
</line-breakpoint>
|
350 |
+
<line-breakpoint enabled="true" suspend="THREAD" type="python-line">
|
351 |
+
<url>file://$PROJECT_DIR$/dust3r/cloud_opt/init_im_poses.py</url>
|
352 |
+
<line>179</line>
|
353 |
+
<option name="timeStamp" value="382" />
|
354 |
+
</line-breakpoint>
|
355 |
+
<line-breakpoint enabled="true" suspend="THREAD" type="python-line">
|
356 |
+
<url>file://$PROJECT_DIR$/dust3r/cloud_opt/init_im_poses.py</url>
|
357 |
+
<line>166</line>
|
358 |
+
<option name="timeStamp" value="383" />
|
359 |
+
</line-breakpoint>
|
360 |
+
<line-breakpoint enabled="true" suspend="THREAD" type="python-line">
|
361 |
+
<url>file://$PROJECT_DIR$/croco/models/dpt_block.py</url>
|
362 |
+
<line>444</line>
|
363 |
+
<option name="timeStamp" value="386" />
|
364 |
+
</line-breakpoint>
|
365 |
+
<line-breakpoint enabled="true" suspend="THREAD" type="python-line">
|
366 |
+
<url>file://$PROJECT_DIR$/dust3r/cloud_opt/init_im_poses.py</url>
|
367 |
+
<line>71</line>
|
368 |
+
<option name="timeStamp" value="388" />
|
369 |
+
</line-breakpoint>
|
370 |
+
<line-breakpoint enabled="true" suspend="THREAD" type="python-line">
|
371 |
+
<url>file://$PROJECT_DIR$/dust3r/cloud_opt/init_im_poses.py</url>
|
372 |
+
<line>184</line>
|
373 |
+
<option name="timeStamp" value="391" />
|
374 |
+
</line-breakpoint>
|
375 |
+
<line-breakpoint enabled="true" suspend="THREAD" type="python-line">
|
376 |
+
<url>file://$PROJECT_DIR$/segment_eval_mask.py</url>
|
377 |
+
<line>58</line>
|
378 |
+
<option name="timeStamp" value="421" />
|
379 |
+
</line-breakpoint>
|
380 |
+
<line-breakpoint enabled="true" suspend="THREAD" type="python-line">
|
381 |
+
<url>file://$PROJECT_DIR$/load_nvos.py</url>
|
382 |
+
<line>163</line>
|
383 |
+
<option name="timeStamp" value="431" />
|
384 |
+
</line-breakpoint>
|
385 |
+
<line-breakpoint enabled="true" suspend="THREAD" type="python-line">
|
386 |
+
<url>file://$PROJECT_DIR$/load_nvos.py</url>
|
387 |
+
<line>185</line>
|
388 |
+
<option name="timeStamp" value="432" />
|
389 |
+
</line-breakpoint>
|
390 |
+
<line-breakpoint enabled="true" suspend="THREAD" type="python-line">
|
391 |
+
<url>file://$PROJECT_DIR$/load_nvos.py</url>
|
392 |
+
<line>187</line>
|
393 |
+
<option name="timeStamp" value="433" />
|
394 |
+
</line-breakpoint>
|
395 |
+
<line-breakpoint enabled="true" suspend="THREAD" type="python-line">
|
396 |
+
<url>file://$PROJECT_DIR$/load_nvos.py</url>
|
397 |
+
<line>184</line>
|
398 |
+
<option name="timeStamp" value="434" />
|
399 |
+
</line-breakpoint>
|
400 |
+
<line-breakpoint enabled="true" suspend="THREAD" type="python-line">
|
401 |
+
<url>file://$PROJECT_DIR$/evaluate.py</url>
|
402 |
+
<line>90</line>
|
403 |
+
<option name="timeStamp" value="435" />
|
404 |
+
</line-breakpoint>
|
405 |
+
<line-breakpoint enabled="true" suspend="THREAD" type="python-line">
|
406 |
+
<url>file://$PROJECT_DIR$/evaluate.py</url>
|
407 |
+
<line>94</line>
|
408 |
+
<option name="timeStamp" value="437" />
|
409 |
+
</line-breakpoint>
|
410 |
+
<line-breakpoint enabled="true" suspend="THREAD" type="python-line">
|
411 |
+
<url>file://$PROJECT_DIR$/evaluate.py</url>
|
412 |
+
<line>56</line>
|
413 |
+
<option name="timeStamp" value="438" />
|
414 |
+
</line-breakpoint>
|
415 |
+
<line-breakpoint enabled="true" suspend="THREAD" type="python-line">
|
416 |
+
<url>file://$PROJECT_DIR$/evaluate.py</url>
|
417 |
+
<line>89</line>
|
418 |
+
<option name="timeStamp" value="441" />
|
419 |
+
</line-breakpoint>
|
420 |
+
<line-breakpoint enabled="true" suspend="THREAD" type="python-line">
|
421 |
+
<url>file://$PROJECT_DIR$/evaluate.py</url>
|
422 |
+
<line>95</line>
|
423 |
+
<option name="timeStamp" value="442" />
|
424 |
+
</line-breakpoint>
|
425 |
+
<line-breakpoint enabled="true" suspend="THREAD" type="python-line">
|
426 |
+
<url>file://$PROJECT_DIR$/segment_eval_mask.py</url>
|
427 |
+
<line>533</line>
|
428 |
+
<option name="timeStamp" value="444" />
|
429 |
+
</line-breakpoint>
|
430 |
+
<line-breakpoint enabled="true" suspend="THREAD" type="python-line">
|
431 |
+
<url>file://$PROJECT_DIR$/load_nvos.py</url>
|
432 |
+
<line>171</line>
|
433 |
+
<option name="timeStamp" value="446" />
|
434 |
+
</line-breakpoint>
|
435 |
+
<line-breakpoint enabled="true" suspend="THREAD" type="python-line">
|
436 |
+
<url>file://$PROJECT_DIR$/load_nvos.py</url>
|
437 |
+
<line>172</line>
|
438 |
+
<option name="timeStamp" value="447" />
|
439 |
+
</line-breakpoint>
|
440 |
+
<line-breakpoint enabled="true" suspend="THREAD" type="python-line">
|
441 |
+
<url>file://$PROJECT_DIR$/load_nvos.py</url>
|
442 |
+
<line>167</line>
|
443 |
+
<option name="timeStamp" value="449" />
|
444 |
+
</line-breakpoint>
|
445 |
+
<line-breakpoint enabled="true" suspend="THREAD" type="python-line">
|
446 |
+
<url>file://$PROJECT_DIR$/load_nvos.py</url>
|
447 |
+
<line>166</line>
|
448 |
+
<option name="timeStamp" value="450" />
|
449 |
+
</line-breakpoint>
|
450 |
+
<line-breakpoint enabled="true" suspend="THREAD" type="python-line">
|
451 |
+
<url>file://$PROJECT_DIR$/load_nvos.py</url>
|
452 |
+
<line>170</line>
|
453 |
+
<option name="timeStamp" value="451" />
|
454 |
+
</line-breakpoint>
|
455 |
+
<line-breakpoint enabled="true" suspend="THREAD" type="python-line">
|
456 |
+
<url>file://$PROJECT_DIR$/segment_eval_mask.py</url>
|
457 |
+
<line>37</line>
|
458 |
+
<option name="timeStamp" value="455" />
|
459 |
+
</line-breakpoint>
|
460 |
+
<line-breakpoint enabled="true" suspend="THREAD" type="python-line">
|
461 |
+
<url>file://$PROJECT_DIR$/dust3r/cloud_opt/init_im_poses.py</url>
|
462 |
+
<line>128</line>
|
463 |
+
<option name="timeStamp" value="456" />
|
464 |
+
</line-breakpoint>
|
465 |
+
<line-breakpoint enabled="true" suspend="THREAD" type="python-line">
|
466 |
+
<url>file://$PROJECT_DIR$/dust3r/cloud_opt/init_im_poses.py</url>
|
467 |
+
<line>131</line>
|
468 |
+
<option name="timeStamp" value="457" />
|
469 |
+
</line-breakpoint>
|
470 |
+
<line-breakpoint enabled="true" suspend="THREAD" type="python-line">
|
471 |
+
<url>file://$PROJECT_DIR$/dust3r/cloud_opt/init_im_poses.py</url>
|
472 |
+
<line>146</line>
|
473 |
+
<option name="timeStamp" value="458" />
|
474 |
+
</line-breakpoint>
|
475 |
+
<line-breakpoint enabled="true" suspend="THREAD" type="python-line">
|
476 |
+
<url>file://$PROJECT_DIR$/dust3r/cloud_opt/init_im_poses.py</url>
|
477 |
+
<line>136</line>
|
478 |
+
<option name="timeStamp" value="459" />
|
479 |
+
</line-breakpoint>
|
480 |
+
<line-breakpoint enabled="true" suspend="THREAD" type="python-line">
|
481 |
+
<url>file://$PROJECT_DIR$/dust3r/cloud_opt/init_im_poses.py</url>
|
482 |
+
<line>140</line>
|
483 |
+
<option name="timeStamp" value="460" />
|
484 |
+
</line-breakpoint>
|
485 |
+
<line-breakpoint enabled="true" suspend="THREAD" type="python-line">
|
486 |
+
<url>file://$PROJECT_DIR$/dust3r/cloud_opt/init_im_poses.py</url>
|
487 |
+
<line>143</line>
|
488 |
+
<option name="timeStamp" value="461" />
|
489 |
+
</line-breakpoint>
|
490 |
+
<line-breakpoint enabled="true" suspend="THREAD" type="python-line">
|
491 |
+
<url>file://$PROJECT_DIR$/dust3r/post_process.py</url>
|
492 |
+
<line>16</line>
|
493 |
+
<option name="timeStamp" value="465" />
|
494 |
+
</line-breakpoint>
|
495 |
+
<line-breakpoint enabled="true" suspend="THREAD" type="python-line">
|
496 |
+
<url>file://$PROJECT_DIR$/dust3r/cloud_opt/init_im_poses.py</url>
|
497 |
+
<line>291</line>
|
498 |
+
<option name="timeStamp" value="474" />
|
499 |
+
</line-breakpoint>
|
500 |
+
<line-breakpoint enabled="true" suspend="THREAD" type="python-line">
|
501 |
+
<url>file://$PROJECT_DIR$/dust3r/cloud_opt/init_im_poses.py</url>
|
502 |
+
<line>292</line>
|
503 |
+
<option name="timeStamp" value="475" />
|
504 |
+
</line-breakpoint>
|
505 |
+
<line-breakpoint enabled="true" suspend="THREAD" type="python-line">
|
506 |
+
<url>file://$PROJECT_DIR$/dust3r/cloud_opt/base_opt.py</url>
|
507 |
+
<line>370</line>
|
508 |
+
<option name="timeStamp" value="484" />
|
509 |
+
</line-breakpoint>
|
510 |
+
<line-breakpoint enabled="true" suspend="THREAD" type="python-line">
|
511 |
+
<url>file://$PROJECT_DIR$/dust3r/cloud_opt/base_opt.py</url>
|
512 |
+
<line>270</line>
|
513 |
+
<option name="timeStamp" value="486" />
|
514 |
+
</line-breakpoint>
|
515 |
+
<line-breakpoint enabled="true" suspend="THREAD" type="python-line">
|
516 |
+
<url>file://$PROJECT_DIR$/dust3r/cloud_opt/base_opt.py</url>
|
517 |
+
<line>269</line>
|
518 |
+
<option name="timeStamp" value="487" />
|
519 |
+
</line-breakpoint>
|
520 |
+
<line-breakpoint enabled="true" suspend="THREAD" type="python-line">
|
521 |
+
<url>file://$PROJECT_DIR$/dust3r/cloud_opt/optimizer.py</url>
|
522 |
+
<line>179</line>
|
523 |
+
<option name="timeStamp" value="490" />
|
524 |
+
</line-breakpoint>
|
525 |
+
<line-breakpoint enabled="true" suspend="THREAD" type="python-line">
|
526 |
+
<url>file://$PROJECT_DIR$/dust3r/cloud_opt/optimizer.py</url>
|
527 |
+
<line>195</line>
|
528 |
+
<option name="timeStamp" value="492" />
|
529 |
+
</line-breakpoint>
|
530 |
+
<line-breakpoint enabled="true" suspend="THREAD" type="python-line">
|
531 |
+
<url>file://$PROJECT_DIR$/dust3r/cloud_opt/optimizer.py</url>
|
532 |
+
<line>176</line>
|
533 |
+
<option name="timeStamp" value="493" />
|
534 |
+
</line-breakpoint>
|
535 |
+
<line-breakpoint enabled="true" suspend="THREAD" type="python-line">
|
536 |
+
<url>file://$PROJECT_DIR$/dust3r/cloud_opt/optimizer.py</url>
|
537 |
+
<line>197</line>
|
538 |
+
<option name="timeStamp" value="494" />
|
539 |
+
</line-breakpoint>
|
540 |
+
<line-breakpoint enabled="true" suspend="THREAD" type="python-line">
|
541 |
+
<url>file://$PROJECT_DIR$/dust3r/cloud_opt/optimizer.py</url>
|
542 |
+
<line>187</line>
|
543 |
+
<option name="timeStamp" value="495" />
|
544 |
+
</line-breakpoint>
|
545 |
+
<line-breakpoint enabled="true" suspend="THREAD" type="python-line">
|
546 |
+
<url>file://$PROJECT_DIR$/segment_eval_mask.py</url>
|
547 |
+
<line>30</line>
|
548 |
+
<option name="timeStamp" value="497" />
|
549 |
+
</line-breakpoint>
|
550 |
+
<line-breakpoint enabled="true" suspend="THREAD" type="python-line">
|
551 |
+
<url>file://$PROJECT_DIR$/dust3r/cloud_opt/base_opt.py</url>
|
552 |
+
<line>377</line>
|
553 |
+
<option name="timeStamp" value="503" />
|
554 |
+
</line-breakpoint>
|
555 |
+
<line-breakpoint enabled="true" suspend="THREAD" type="python-line">
|
556 |
+
<url>file://$PROJECT_DIR$/dust3r/cloud_opt/base_opt.py</url>
|
557 |
+
<line>140</line>
|
558 |
+
<option name="timeStamp" value="504" />
|
559 |
+
</line-breakpoint>
|
560 |
+
<line-breakpoint enabled="true" suspend="THREAD" type="python-line">
|
561 |
+
<url>file://$PROJECT_DIR$/dust3r/cloud_opt/base_opt.py</url>
|
562 |
+
<line>139</line>
|
563 |
+
<option name="timeStamp" value="505" />
|
564 |
+
</line-breakpoint>
|
565 |
+
<line-breakpoint enabled="true" suspend="THREAD" type="python-line">
|
566 |
+
<url>file://$PROJECT_DIR$/segment_eval_mask.py</url>
|
567 |
+
<line>167</line>
|
568 |
+
<option name="timeStamp" value="506" />
|
569 |
+
</line-breakpoint>
|
570 |
+
<line-breakpoint enabled="true" suspend="THREAD" type="python-line">
|
571 |
+
<url>file://$PROJECT_DIR$/segment_eval_mask.py</url>
|
572 |
+
<line>173</line>
|
573 |
+
<option name="timeStamp" value="508" />
|
574 |
+
</line-breakpoint>
|
575 |
+
<line-breakpoint enabled="true" suspend="THREAD" type="python-line">
|
576 |
+
<url>file://$PROJECT_DIR$/segment_eval_mask.py</url>
|
577 |
+
<line>171</line>
|
578 |
+
<option name="timeStamp" value="509" />
|
579 |
+
</line-breakpoint>
|
580 |
+
<line-breakpoint enabled="true" suspend="THREAD" type="python-line">
|
581 |
+
<url>file://$PROJECT_DIR$/segment_eval_mask.py</url>
|
582 |
+
<line>162</line>
|
583 |
+
<option name="timeStamp" value="513" />
|
584 |
+
</line-breakpoint>
|
585 |
+
<line-breakpoint enabled="true" suspend="THREAD" type="python-line">
|
586 |
+
<url>file://$PROJECT_DIR$/SAM/predictor.py</url>
|
587 |
+
<line>162</line>
|
588 |
+
<option name="timeStamp" value="514" />
|
589 |
+
</line-breakpoint>
|
590 |
+
<line-breakpoint enabled="true" suspend="THREAD" type="python-line">
|
591 |
+
<url>file://$PROJECT_DIR$/SAM/predictor.py</url>
|
592 |
+
<line>153</line>
|
593 |
+
<option name="timeStamp" value="515" />
|
594 |
+
</line-breakpoint>
|
595 |
+
<line-breakpoint enabled="true" suspend="THREAD" type="python-line">
|
596 |
+
<url>file://$PROJECT_DIR$/SAM/predictor.py</url>
|
597 |
+
<line>237</line>
|
598 |
+
<option name="timeStamp" value="516" />
|
599 |
+
</line-breakpoint>
|
600 |
+
<line-breakpoint enabled="true" suspend="THREAD" type="python-line">
|
601 |
+
<url>file://$PROJECT_DIR$/SAM/predictor.py</url>
|
602 |
+
<line>239</line>
|
603 |
+
<option name="timeStamp" value="517" />
|
604 |
+
</line-breakpoint>
|
605 |
+
<line-breakpoint enabled="true" suspend="THREAD" type="python-line">
|
606 |
+
<url>file://$PROJECT_DIR$/gys_util.py</url>
|
607 |
+
<line>109</line>
|
608 |
+
<option name="timeStamp" value="522" />
|
609 |
+
</line-breakpoint>
|
610 |
+
<line-breakpoint enabled="true" suspend="THREAD" type="python-line">
|
611 |
+
<url>file://$PROJECT_DIR$/segment_eval_mask.py</url>
|
612 |
+
<line>20</line>
|
613 |
+
<option name="timeStamp" value="526" />
|
614 |
+
</line-breakpoint>
|
615 |
+
<line-breakpoint enabled="true" suspend="THREAD" type="python-line">
|
616 |
+
<url>file://$PROJECT_DIR$/segment_eval_mask.py</url>
|
617 |
+
<line>21</line>
|
618 |
+
<option name="timeStamp" value="527" />
|
619 |
+
</line-breakpoint>
|
620 |
+
<line-breakpoint enabled="true" suspend="THREAD" type="python-line">
|
621 |
+
<url>file://$PROJECT_DIR$/segment_eval_mask.py</url>
|
622 |
+
<line>94</line>
|
623 |
+
<option name="timeStamp" value="530" />
|
624 |
+
</line-breakpoint>
|
625 |
+
<line-breakpoint enabled="true" suspend="THREAD" type="python-line">
|
626 |
+
<url>file://$PROJECT_DIR$/segment_eval_mask.py</url>
|
627 |
+
<line>337</line>
|
628 |
+
<option name="timeStamp" value="536" />
|
629 |
+
</line-breakpoint>
|
630 |
+
<line-breakpoint enabled="true" suspend="THREAD" type="python-line">
|
631 |
+
<url>file://$PROJECT_DIR$/segment_eval_mask.py</url>
|
632 |
+
<line>350</line>
|
633 |
+
<option name="timeStamp" value="537" />
|
634 |
+
</line-breakpoint>
|
635 |
+
<line-breakpoint enabled="true" suspend="THREAD" type="python-line">
|
636 |
+
<url>file://$PROJECT_DIR$/segment_eval_mask.py</url>
|
637 |
+
<line>505</line>
|
638 |
+
<option name="timeStamp" value="539" />
|
639 |
+
</line-breakpoint>
|
640 |
+
</breakpoints>
|
641 |
+
</breakpoint-manager>
|
642 |
+
</component>
|
643 |
+
<component name="com.intellij.coverage.CoverageDataManagerImpl">
|
644 |
+
<SUITE FILE_PATH="coverage/dust3r$test_vis.coverage" NAME="test_vis Coverage Results" MODIFIED="1714045279462" SOURCE_PROVIDER="com.intellij.coverage.DefaultCoverageFileProvider" RUNNER="coverage.py" COVERAGE_BY_TEST_ENABLED="true" COVERAGE_TRACING_ENABLED="false" WORKING_DIRECTORY="$PROJECT_DIR$" />
|
645 |
+
<SUITE FILE_PATH="coverage/dust3r$gys_util.coverage" NAME="gys_util Coverage Results" MODIFIED="1722411390675" SOURCE_PROVIDER="com.intellij.coverage.DefaultCoverageFileProvider" RUNNER="coverage.py" COVERAGE_BY_TEST_ENABLED="true" COVERAGE_TRACING_ENABLED="false" WORKING_DIRECTORY="$PROJECT_DIR$" />
|
646 |
+
<SUITE FILE_PATH="coverage/dust3r$load_nvos.coverage" NAME="load_nvos Coverage Results" MODIFIED="1722071842346" SOURCE_PROVIDER="com.intellij.coverage.DefaultCoverageFileProvider" RUNNER="coverage.py" COVERAGE_BY_TEST_ENABLED="true" COVERAGE_TRACING_ENABLED="false" WORKING_DIRECTORY="$PROJECT_DIR$" />
|
647 |
+
<SUITE FILE_PATH="coverage/dust3r$prepare_prompts.coverage" NAME="prepare_prompts Coverage Results" MODIFIED="1714108229869" SOURCE_PROVIDER="com.intellij.coverage.DefaultCoverageFileProvider" RUNNER="coverage.py" COVERAGE_BY_TEST_ENABLED="true" COVERAGE_TRACING_ENABLED="false" WORKING_DIRECTORY="$PROJECT_DIR$/lib" />
|
648 |
+
<SUITE FILE_PATH="coverage/dust3r$base_opt.coverage" NAME="base_opt Coverage Results" MODIFIED="1722220609861" SOURCE_PROVIDER="com.intellij.coverage.DefaultCoverageFileProvider" RUNNER="coverage.py" COVERAGE_BY_TEST_ENABLED="true" COVERAGE_TRACING_ENABLED="false" WORKING_DIRECTORY="$PROJECT_DIR$/dust3r/cloud_opt" />
|
649 |
+
<SUITE FILE_PATH="coverage/dust3r$segment_eval_mask.coverage" NAME="segment_eval_mask Coverage Results" MODIFIED="1723797134862" SOURCE_PROVIDER="com.intellij.coverage.DefaultCoverageFileProvider" RUNNER="coverage.py" COVERAGE_BY_TEST_ENABLED="true" COVERAGE_TRACING_ENABLED="false" WORKING_DIRECTORY="$PROJECT_DIR$" />
|
650 |
+
<SUITE FILE_PATH="coverage/dust3r$demo.coverage" NAME="demo Coverage Results" MODIFIED="1714038776406" SOURCE_PROVIDER="com.intellij.coverage.DefaultCoverageFileProvider" RUNNER="coverage.py" COVERAGE_BY_TEST_ENABLED="true" COVERAGE_TRACING_ENABLED="false" WORKING_DIRECTORY="$PROJECT_DIR$" />
|
651 |
+
<SUITE FILE_PATH="coverage/dust3r$evaluate.coverage" NAME="evaluate Coverage Results" MODIFIED="1722070716981" SOURCE_PROVIDER="com.intellij.coverage.DefaultCoverageFileProvider" RUNNER="coverage.py" COVERAGE_BY_TEST_ENABLED="true" COVERAGE_TRACING_ENABLED="false" WORKING_DIRECTORY="$PROJECT_DIR$" />
|
652 |
+
</component>
|
653 |
+
</project>
|
LICENSE
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
DUSt3R, Copyright (c) 2024-present Naver Corporation, is licensed under the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 license.
|
2 |
+
|
3 |
+
A summary of the CC BY-NC-SA 4.0 license is located here:
|
4 |
+
https://creativecommons.org/licenses/by-nc-sa/4.0/
|
5 |
+
|
6 |
+
The CC BY-NC-SA 4.0 license is located here:
|
7 |
+
https://creativecommons.org/licenses/by-nc-sa/4.0/legalcode
|
NOTICE
ADDED
@@ -0,0 +1,13 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
DUSt3R
|
2 |
+
Copyright 2024-present NAVER Corp.
|
3 |
+
|
4 |
+
This project contains subcomponents with separate copyright notices and license terms.
|
5 |
+
Your use of the source code for these subcomponents is subject to the terms and conditions of the following licenses.
|
6 |
+
|
7 |
+
====
|
8 |
+
|
9 |
+
naver/croco
|
10 |
+
https://github.com/naver/croco/
|
11 |
+
|
12 |
+
Creative Commons Attribution-NonCommercial-ShareAlike 4.0
|
13 |
+
|
README.md
CHANGED
@@ -1,12 +1,12 @@
|
|
1 |
-
---
|
2 |
-
title:
|
3 |
-
emoji:
|
4 |
-
colorFrom:
|
5 |
-
colorTo: green
|
6 |
-
sdk: gradio
|
7 |
-
sdk_version: 4.42.0
|
8 |
-
app_file: app.py
|
9 |
-
pinned: false
|
10 |
-
---
|
11 |
-
|
12 |
-
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
|
|
1 |
+
---
|
2 |
+
title: 3D
|
3 |
+
emoji: 🐨
|
4 |
+
colorFrom: yellow
|
5 |
+
colorTo: green
|
6 |
+
sdk: gradio
|
7 |
+
sdk_version: 4.42.0
|
8 |
+
app_file: app.py
|
9 |
+
pinned: false
|
10 |
+
---
|
11 |
+
|
12 |
+
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
SAM/__init__.py
ADDED
@@ -0,0 +1,15 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
2 |
+
# All rights reserved.
|
3 |
+
|
4 |
+
# This source code is licensed under the license found in the
|
5 |
+
# LICENSE file in the root directory of this source tree.
|
6 |
+
|
7 |
+
from .build_sam import (
|
8 |
+
build_sam,
|
9 |
+
build_sam_vit_h,
|
10 |
+
build_sam_vit_l,
|
11 |
+
build_sam_vit_b,
|
12 |
+
sam_model_registry,
|
13 |
+
)
|
14 |
+
from .predictor import SamPredictor
|
15 |
+
from .automatic_mask_generator import SamAutomaticMaskGenerator
|
SAM/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (401 Bytes). View file
|
|
SAM/__pycache__/automatic_mask_generator.cpython-310.pyc
ADDED
Binary file (11.4 kB). View file
|
|
SAM/__pycache__/build_sam.cpython-310.pyc
ADDED
Binary file (2.15 kB). View file
|
|
SAM/__pycache__/predictor.cpython-310.pyc
ADDED
Binary file (9.94 kB). View file
|
|
SAM/automatic_mask_generator.py
ADDED
@@ -0,0 +1,372 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
2 |
+
# All rights reserved.
|
3 |
+
|
4 |
+
# This source code is licensed under the license found in the
|
5 |
+
# LICENSE file in the root directory of this source tree.
|
6 |
+
|
7 |
+
import numpy as np
|
8 |
+
import torch
|
9 |
+
from torchvision.ops.boxes import batched_nms, box_area # type: ignore
|
10 |
+
|
11 |
+
from typing import Any, Dict, List, Optional, Tuple
|
12 |
+
|
13 |
+
from .modeling import Sam
|
14 |
+
from .predictor import SamPredictor
|
15 |
+
from .utils.amg import (
|
16 |
+
MaskData,
|
17 |
+
area_from_rle,
|
18 |
+
batch_iterator,
|
19 |
+
batched_mask_to_box,
|
20 |
+
box_xyxy_to_xywh,
|
21 |
+
build_all_layer_point_grids,
|
22 |
+
calculate_stability_score,
|
23 |
+
coco_encode_rle,
|
24 |
+
generate_crop_boxes,
|
25 |
+
is_box_near_crop_edge,
|
26 |
+
mask_to_rle_pytorch,
|
27 |
+
remove_small_regions,
|
28 |
+
rle_to_mask,
|
29 |
+
uncrop_boxes_xyxy,
|
30 |
+
uncrop_masks,
|
31 |
+
uncrop_points,
|
32 |
+
)
|
33 |
+
|
34 |
+
|
35 |
+
class SamAutomaticMaskGenerator:
|
36 |
+
def __init__(
|
37 |
+
self,
|
38 |
+
model: Sam,
|
39 |
+
points_per_side: Optional[int] = 32,
|
40 |
+
points_per_batch: int = 64,
|
41 |
+
pred_iou_thresh: float = 0.88,
|
42 |
+
stability_score_thresh: float = 0.95,
|
43 |
+
stability_score_offset: float = 1.0,
|
44 |
+
box_nms_thresh: float = 0.7,
|
45 |
+
crop_n_layers: int = 0,
|
46 |
+
crop_nms_thresh: float = 0.7,
|
47 |
+
crop_overlap_ratio: float = 512 / 1500,
|
48 |
+
crop_n_points_downscale_factor: int = 1,
|
49 |
+
point_grids: Optional[List[np.ndarray]] = None,
|
50 |
+
min_mask_region_area: int = 0,
|
51 |
+
output_mode: str = "binary_mask",
|
52 |
+
) -> None:
|
53 |
+
"""
|
54 |
+
Using a SAM model, generates masks for the entire image.
|
55 |
+
Generates a grid of point prompts over the image, then filters
|
56 |
+
low quality and duplicate masks. The default settings are chosen
|
57 |
+
for SAM with a ViT-H backbone.
|
58 |
+
|
59 |
+
Arguments:
|
60 |
+
model (Sam): The SAM model to use for mask prediction.
|
61 |
+
points_per_side (int or None): The number of points to be sampled
|
62 |
+
along one side of the image. The total number of points is
|
63 |
+
points_per_side**2. If None, 'point_grids' must provide explicit
|
64 |
+
point sampling.
|
65 |
+
points_per_batch (int): Sets the number of points run simultaneously
|
66 |
+
by the model. Higher numbers may be faster but use more GPU memory.
|
67 |
+
pred_iou_thresh (float): A filtering threshold in [0,1], using the
|
68 |
+
model's predicted mask quality.
|
69 |
+
stability_score_thresh (float): A filtering threshold in [0,1], using
|
70 |
+
the stability of the mask under changes to the cutoff used to binarize
|
71 |
+
the model's mask predictions.
|
72 |
+
stability_score_offset (float): The amount to shift the cutoff when
|
73 |
+
calculated the stability score.
|
74 |
+
box_nms_thresh (float): The box IoU cutoff used by non-maximal
|
75 |
+
suppression to filter duplicate masks.
|
76 |
+
crop_n_layers (int): If >0, mask prediction will be run again on
|
77 |
+
crops of the image. Sets the number of layers to run, where each
|
78 |
+
layer has 2**i_layer number of image crops.
|
79 |
+
crop_nms_thresh (float): The box IoU cutoff used by non-maximal
|
80 |
+
suppression to filter duplicate masks between different crops.
|
81 |
+
crop_overlap_ratio (float): Sets the degree to which crops overlap.
|
82 |
+
In the first crop layer, crops will overlap by this fraction of
|
83 |
+
the image length. Later layers with more crops scale down this overlap.
|
84 |
+
crop_n_points_downscale_factor (int): The number of points-per-side
|
85 |
+
sampled in layer n is scaled down by crop_n_points_downscale_factor**n.
|
86 |
+
point_grids (list(np.ndarray) or None): A list over explicit grids
|
87 |
+
of points used for sampling, normalized to [0,1]. The nth grid in the
|
88 |
+
list is used in the nth crop layer. Exclusive with points_per_side.
|
89 |
+
min_mask_region_area (int): If >0, postprocessing will be applied
|
90 |
+
to remove disconnected regions and holes in masks with area smaller
|
91 |
+
than min_mask_region_area. Requires opencv.
|
92 |
+
output_mode (str): The form masks are returned in. Can be 'binary_mask',
|
93 |
+
'uncompressed_rle', or 'coco_rle'. 'coco_rle' requires pycocotools.
|
94 |
+
For large resolutions, 'binary_mask' may consume large amounts of
|
95 |
+
memory.
|
96 |
+
"""
|
97 |
+
|
98 |
+
assert (points_per_side is None) != (
|
99 |
+
point_grids is None
|
100 |
+
), "Exactly one of points_per_side or point_grid must be provided."
|
101 |
+
if points_per_side is not None:
|
102 |
+
self.point_grids = build_all_layer_point_grids(
|
103 |
+
points_per_side,
|
104 |
+
crop_n_layers,
|
105 |
+
crop_n_points_downscale_factor,
|
106 |
+
)
|
107 |
+
elif point_grids is not None:
|
108 |
+
self.point_grids = point_grids
|
109 |
+
else:
|
110 |
+
raise ValueError("Can't have both points_per_side and point_grid be None.")
|
111 |
+
|
112 |
+
assert output_mode in [
|
113 |
+
"binary_mask",
|
114 |
+
"uncompressed_rle",
|
115 |
+
"coco_rle",
|
116 |
+
], f"Unknown output_mode {output_mode}."
|
117 |
+
if output_mode == "coco_rle":
|
118 |
+
from pycocotools import mask as mask_utils # type: ignore # noqa: F401
|
119 |
+
|
120 |
+
if min_mask_region_area > 0:
|
121 |
+
import cv2 # type: ignore # noqa: F401
|
122 |
+
|
123 |
+
self.predictor = SamPredictor(model)
|
124 |
+
self.points_per_batch = points_per_batch
|
125 |
+
self.pred_iou_thresh = pred_iou_thresh
|
126 |
+
self.stability_score_thresh = stability_score_thresh
|
127 |
+
self.stability_score_offset = stability_score_offset
|
128 |
+
self.box_nms_thresh = box_nms_thresh
|
129 |
+
self.crop_n_layers = crop_n_layers
|
130 |
+
self.crop_nms_thresh = crop_nms_thresh
|
131 |
+
self.crop_overlap_ratio = crop_overlap_ratio
|
132 |
+
self.crop_n_points_downscale_factor = crop_n_points_downscale_factor
|
133 |
+
self.min_mask_region_area = min_mask_region_area
|
134 |
+
self.output_mode = output_mode
|
135 |
+
|
136 |
+
@torch.no_grad()
|
137 |
+
def generate(self, image: np.ndarray) -> List[Dict[str, Any]]:
|
138 |
+
"""
|
139 |
+
Generates masks for the given image.
|
140 |
+
|
141 |
+
Arguments:
|
142 |
+
image (np.ndarray): The image to generate masks for, in HWC uint8 format.
|
143 |
+
|
144 |
+
Returns:
|
145 |
+
list(dict(str, any)): A list over records for masks. Each record is
|
146 |
+
a dict containing the following keys:
|
147 |
+
segmentation (dict(str, any) or np.ndarray): The mask. If
|
148 |
+
output_mode='binary_mask', is an array of shape HW. Otherwise,
|
149 |
+
is a dictionary containing the RLE.
|
150 |
+
bbox (list(float)): The box around the mask, in XYWH format.
|
151 |
+
area (int): The area in pixels of the mask.
|
152 |
+
predicted_iou (float): The model's own prediction of the mask's
|
153 |
+
quality. This is filtered by the pred_iou_thresh parameter.
|
154 |
+
point_coords (list(list(float))): The point coordinates input
|
155 |
+
to the model to generate this mask.
|
156 |
+
stability_score (float): A measure of the mask's quality. This
|
157 |
+
is filtered on using the stability_score_thresh parameter.
|
158 |
+
crop_box (list(float)): The crop of the image used to generate
|
159 |
+
the mask, given in XYWH format.
|
160 |
+
"""
|
161 |
+
|
162 |
+
# Generate masks
|
163 |
+
mask_data = self._generate_masks(image)
|
164 |
+
|
165 |
+
# Filter small disconnected regions and holes in masks
|
166 |
+
if self.min_mask_region_area > 0:
|
167 |
+
mask_data = self.postprocess_small_regions(
|
168 |
+
mask_data,
|
169 |
+
self.min_mask_region_area,
|
170 |
+
max(self.box_nms_thresh, self.crop_nms_thresh),
|
171 |
+
)
|
172 |
+
|
173 |
+
# Encode masks
|
174 |
+
if self.output_mode == "coco_rle":
|
175 |
+
mask_data["segmentations"] = [coco_encode_rle(rle) for rle in mask_data["rles"]]
|
176 |
+
elif self.output_mode == "binary_mask":
|
177 |
+
mask_data["segmentations"] = [rle_to_mask(rle) for rle in mask_data["rles"]]
|
178 |
+
else:
|
179 |
+
mask_data["segmentations"] = mask_data["rles"]
|
180 |
+
|
181 |
+
# Write mask records
|
182 |
+
curr_anns = []
|
183 |
+
for idx in range(len(mask_data["segmentations"])):
|
184 |
+
ann = {
|
185 |
+
"segmentation": mask_data["segmentations"][idx],
|
186 |
+
"area": area_from_rle(mask_data["rles"][idx]),
|
187 |
+
"bbox": box_xyxy_to_xywh(mask_data["boxes"][idx]).tolist(),
|
188 |
+
"predicted_iou": mask_data["iou_preds"][idx].item(),
|
189 |
+
"point_coords": [mask_data["points"][idx].tolist()],
|
190 |
+
"stability_score": mask_data["stability_score"][idx].item(),
|
191 |
+
"crop_box": box_xyxy_to_xywh(mask_data["crop_boxes"][idx]).tolist(),
|
192 |
+
}
|
193 |
+
curr_anns.append(ann)
|
194 |
+
|
195 |
+
return curr_anns
|
196 |
+
|
197 |
+
def _generate_masks(self, image: np.ndarray) -> MaskData:
|
198 |
+
orig_size = image.shape[:2]
|
199 |
+
crop_boxes, layer_idxs = generate_crop_boxes(
|
200 |
+
orig_size, self.crop_n_layers, self.crop_overlap_ratio
|
201 |
+
)
|
202 |
+
|
203 |
+
# Iterate over image crops
|
204 |
+
data = MaskData()
|
205 |
+
for crop_box, layer_idx in zip(crop_boxes, layer_idxs):
|
206 |
+
crop_data = self._process_crop(image, crop_box, layer_idx, orig_size)
|
207 |
+
data.cat(crop_data)
|
208 |
+
|
209 |
+
# Remove duplicate masks between crops
|
210 |
+
if len(crop_boxes) > 1:
|
211 |
+
# Prefer masks from smaller crops
|
212 |
+
scores = 1 / box_area(data["crop_boxes"])
|
213 |
+
scores = scores.to(data["boxes"].device)
|
214 |
+
keep_by_nms = batched_nms(
|
215 |
+
data["boxes"].float(),
|
216 |
+
scores,
|
217 |
+
torch.zeros_like(data["boxes"][:, 0]), # categories
|
218 |
+
iou_threshold=self.crop_nms_thresh,
|
219 |
+
)
|
220 |
+
data.filter(keep_by_nms)
|
221 |
+
|
222 |
+
data.to_numpy()
|
223 |
+
return data
|
224 |
+
|
225 |
+
def _process_crop(
|
226 |
+
self,
|
227 |
+
image: np.ndarray,
|
228 |
+
crop_box: List[int],
|
229 |
+
crop_layer_idx: int,
|
230 |
+
orig_size: Tuple[int, ...],
|
231 |
+
) -> MaskData:
|
232 |
+
# Crop the image and calculate embeddings
|
233 |
+
x0, y0, x1, y1 = crop_box
|
234 |
+
cropped_im = image[y0:y1, x0:x1, :]
|
235 |
+
cropped_im_size = cropped_im.shape[:2]
|
236 |
+
self.predictor.set_image(cropped_im)
|
237 |
+
|
238 |
+
# Get points for this crop
|
239 |
+
points_scale = np.array(cropped_im_size)[None, ::-1]
|
240 |
+
points_for_image = self.point_grids[crop_layer_idx] * points_scale
|
241 |
+
|
242 |
+
# Generate masks for this crop in batches
|
243 |
+
data = MaskData()
|
244 |
+
for (points,) in batch_iterator(self.points_per_batch, points_for_image):
|
245 |
+
batch_data = self._process_batch(points, cropped_im_size, crop_box, orig_size)
|
246 |
+
data.cat(batch_data)
|
247 |
+
del batch_data
|
248 |
+
self.predictor.reset_image()
|
249 |
+
|
250 |
+
# Remove duplicates within this crop.
|
251 |
+
keep_by_nms = batched_nms(
|
252 |
+
data["boxes"].float(),
|
253 |
+
data["iou_preds"],
|
254 |
+
torch.zeros_like(data["boxes"][:, 0]), # categories
|
255 |
+
iou_threshold=self.box_nms_thresh,
|
256 |
+
)
|
257 |
+
data.filter(keep_by_nms)
|
258 |
+
|
259 |
+
# Return to the original image frame
|
260 |
+
data["boxes"] = uncrop_boxes_xyxy(data["boxes"], crop_box)
|
261 |
+
data["points"] = uncrop_points(data["points"], crop_box)
|
262 |
+
data["crop_boxes"] = torch.tensor([crop_box for _ in range(len(data["rles"]))])
|
263 |
+
|
264 |
+
return data
|
265 |
+
|
266 |
+
def _process_batch(
|
267 |
+
self,
|
268 |
+
points: np.ndarray,
|
269 |
+
im_size: Tuple[int, ...],
|
270 |
+
crop_box: List[int],
|
271 |
+
orig_size: Tuple[int, ...],
|
272 |
+
) -> MaskData:
|
273 |
+
orig_h, orig_w = orig_size
|
274 |
+
|
275 |
+
# Run model on this batch
|
276 |
+
transformed_points = self.predictor.transform.apply_coords(points, im_size)
|
277 |
+
in_points = torch.as_tensor(transformed_points, device=self.predictor.device)
|
278 |
+
in_labels = torch.ones(in_points.shape[0], dtype=torch.int, device=in_points.device)
|
279 |
+
masks, iou_preds, _ = self.predictor.predict_torch(
|
280 |
+
in_points[:, None, :],
|
281 |
+
in_labels[:, None],
|
282 |
+
multimask_output=True,
|
283 |
+
return_logits=True,
|
284 |
+
)
|
285 |
+
|
286 |
+
# Serialize predictions and store in MaskData
|
287 |
+
data = MaskData(
|
288 |
+
masks=masks.flatten(0, 1),
|
289 |
+
iou_preds=iou_preds.flatten(0, 1),
|
290 |
+
points=torch.as_tensor(points.repeat(masks.shape[1], axis=0)),
|
291 |
+
)
|
292 |
+
del masks
|
293 |
+
|
294 |
+
# Filter by predicted IoU
|
295 |
+
if self.pred_iou_thresh > 0.0:
|
296 |
+
keep_mask = data["iou_preds"] > self.pred_iou_thresh
|
297 |
+
data.filter(keep_mask)
|
298 |
+
|
299 |
+
# Calculate stability score
|
300 |
+
data["stability_score"] = calculate_stability_score(
|
301 |
+
data["masks"], self.predictor.model.mask_threshold, self.stability_score_offset
|
302 |
+
)
|
303 |
+
if self.stability_score_thresh > 0.0:
|
304 |
+
keep_mask = data["stability_score"] >= self.stability_score_thresh
|
305 |
+
data.filter(keep_mask)
|
306 |
+
|
307 |
+
# Threshold masks and calculate boxes
|
308 |
+
data["masks"] = data["masks"] > self.predictor.model.mask_threshold
|
309 |
+
data["boxes"] = batched_mask_to_box(data["masks"])
|
310 |
+
|
311 |
+
# Filter boxes that touch crop boundaries
|
312 |
+
keep_mask = ~is_box_near_crop_edge(data["boxes"], crop_box, [0, 0, orig_w, orig_h])
|
313 |
+
if not torch.all(keep_mask):
|
314 |
+
data.filter(keep_mask)
|
315 |
+
|
316 |
+
# Compress to RLE
|
317 |
+
data["masks"] = uncrop_masks(data["masks"], crop_box, orig_h, orig_w)
|
318 |
+
data["rles"] = mask_to_rle_pytorch(data["masks"])
|
319 |
+
del data["masks"]
|
320 |
+
|
321 |
+
return data
|
322 |
+
|
323 |
+
@staticmethod
|
324 |
+
def postprocess_small_regions(
|
325 |
+
mask_data: MaskData, min_area: int, nms_thresh: float
|
326 |
+
) -> MaskData:
|
327 |
+
"""
|
328 |
+
Removes small disconnected regions and holes in masks, then reruns
|
329 |
+
box NMS to remove any new duplicates.
|
330 |
+
|
331 |
+
Edits mask_data in place.
|
332 |
+
|
333 |
+
Requires open-cv as a dependency.
|
334 |
+
"""
|
335 |
+
if len(mask_data["rles"]) == 0:
|
336 |
+
return mask_data
|
337 |
+
|
338 |
+
# Filter small disconnected regions and holes
|
339 |
+
new_masks = []
|
340 |
+
scores = []
|
341 |
+
for rle in mask_data["rles"]:
|
342 |
+
mask = rle_to_mask(rle)
|
343 |
+
|
344 |
+
mask, changed = remove_small_regions(mask, min_area, mode="holes")
|
345 |
+
unchanged = not changed
|
346 |
+
mask, changed = remove_small_regions(mask, min_area, mode="islands")
|
347 |
+
unchanged = unchanged and not changed
|
348 |
+
|
349 |
+
new_masks.append(torch.as_tensor(mask).unsqueeze(0))
|
350 |
+
# Give score=0 to changed masks and score=1 to unchanged masks
|
351 |
+
# so NMS will prefer ones that didn't need postprocessing
|
352 |
+
scores.append(float(unchanged))
|
353 |
+
|
354 |
+
# Recalculate boxes and remove any new duplicates
|
355 |
+
masks = torch.cat(new_masks, dim=0)
|
356 |
+
boxes = batched_mask_to_box(masks)
|
357 |
+
keep_by_nms = batched_nms(
|
358 |
+
boxes.float(),
|
359 |
+
torch.as_tensor(scores),
|
360 |
+
torch.zeros_like(boxes[:, 0]), # categories
|
361 |
+
iou_threshold=nms_thresh,
|
362 |
+
)
|
363 |
+
|
364 |
+
# Only recalculate RLEs for masks that have changed
|
365 |
+
for i_mask in keep_by_nms:
|
366 |
+
if scores[i_mask] == 0.0:
|
367 |
+
mask_torch = masks[i_mask].unsqueeze(0)
|
368 |
+
mask_data["rles"][i_mask] = mask_to_rle_pytorch(mask_torch)[0]
|
369 |
+
mask_data["boxes"][i_mask] = boxes[i_mask] # update res directly
|
370 |
+
mask_data.filter(keep_by_nms)
|
371 |
+
|
372 |
+
return mask_data
|
SAM/build_sam.py
ADDED
@@ -0,0 +1,107 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
2 |
+
# All rights reserved.
|
3 |
+
|
4 |
+
# This source code is licensed under the license found in the
|
5 |
+
# LICENSE file in the root directory of this source tree.
|
6 |
+
|
7 |
+
import torch
|
8 |
+
|
9 |
+
from functools import partial
|
10 |
+
|
11 |
+
from .modeling import ImageEncoderViT, MaskDecoder, PromptEncoder, Sam, TwoWayTransformer
|
12 |
+
|
13 |
+
|
14 |
+
def build_sam_vit_h(checkpoint=None):
|
15 |
+
return _build_sam(
|
16 |
+
encoder_embed_dim=1280,
|
17 |
+
encoder_depth=32,
|
18 |
+
encoder_num_heads=16,
|
19 |
+
encoder_global_attn_indexes=[7, 15, 23, 31],
|
20 |
+
checkpoint=checkpoint,
|
21 |
+
)
|
22 |
+
|
23 |
+
|
24 |
+
build_sam = build_sam_vit_h
|
25 |
+
|
26 |
+
|
27 |
+
def build_sam_vit_l(checkpoint=None):
|
28 |
+
return _build_sam(
|
29 |
+
encoder_embed_dim=1024,
|
30 |
+
encoder_depth=24,
|
31 |
+
encoder_num_heads=16,
|
32 |
+
encoder_global_attn_indexes=[5, 11, 17, 23],
|
33 |
+
checkpoint=checkpoint,
|
34 |
+
)
|
35 |
+
|
36 |
+
|
37 |
+
def build_sam_vit_b(checkpoint=None):
|
38 |
+
return _build_sam(
|
39 |
+
encoder_embed_dim=768,
|
40 |
+
encoder_depth=12,
|
41 |
+
encoder_num_heads=12,
|
42 |
+
encoder_global_attn_indexes=[2, 5, 8, 11],
|
43 |
+
checkpoint=checkpoint,
|
44 |
+
)
|
45 |
+
|
46 |
+
|
47 |
+
sam_model_registry = {
|
48 |
+
"default": build_sam_vit_h,
|
49 |
+
"vit_h": build_sam_vit_h,
|
50 |
+
"vit_l": build_sam_vit_l,
|
51 |
+
"vit_b": build_sam_vit_b,
|
52 |
+
}
|
53 |
+
|
54 |
+
|
55 |
+
def _build_sam(
|
56 |
+
encoder_embed_dim,
|
57 |
+
encoder_depth,
|
58 |
+
encoder_num_heads,
|
59 |
+
encoder_global_attn_indexes,
|
60 |
+
checkpoint=None,
|
61 |
+
):
|
62 |
+
prompt_embed_dim = 256
|
63 |
+
image_size = 1024
|
64 |
+
vit_patch_size = 16
|
65 |
+
image_embedding_size = image_size // vit_patch_size
|
66 |
+
sam = Sam(
|
67 |
+
image_encoder=ImageEncoderViT(
|
68 |
+
depth=encoder_depth,
|
69 |
+
embed_dim=encoder_embed_dim,
|
70 |
+
img_size=image_size,
|
71 |
+
mlp_ratio=4,
|
72 |
+
norm_layer=partial(torch.nn.LayerNorm, eps=1e-6),
|
73 |
+
num_heads=encoder_num_heads,
|
74 |
+
patch_size=vit_patch_size,
|
75 |
+
qkv_bias=True,
|
76 |
+
use_rel_pos=True,
|
77 |
+
global_attn_indexes=encoder_global_attn_indexes,
|
78 |
+
window_size=14,
|
79 |
+
out_chans=prompt_embed_dim,
|
80 |
+
),
|
81 |
+
prompt_encoder=PromptEncoder(
|
82 |
+
embed_dim=prompt_embed_dim,
|
83 |
+
image_embedding_size=(image_embedding_size, image_embedding_size),
|
84 |
+
input_image_size=(image_size, image_size),
|
85 |
+
mask_in_chans=16,
|
86 |
+
),
|
87 |
+
mask_decoder=MaskDecoder(
|
88 |
+
num_multimask_outputs=3,
|
89 |
+
transformer=TwoWayTransformer(
|
90 |
+
depth=2,
|
91 |
+
embedding_dim=prompt_embed_dim,
|
92 |
+
mlp_dim=2048,
|
93 |
+
num_heads=8,
|
94 |
+
),
|
95 |
+
transformer_dim=prompt_embed_dim,
|
96 |
+
iou_head_depth=3,
|
97 |
+
iou_head_hidden_dim=256,
|
98 |
+
),
|
99 |
+
pixel_mean=[123.675, 116.28, 103.53],
|
100 |
+
pixel_std=[58.395, 57.12, 57.375],
|
101 |
+
)
|
102 |
+
sam.eval()
|
103 |
+
if checkpoint is not None:
|
104 |
+
with open(checkpoint, "rb") as f:
|
105 |
+
state_dict = torch.load(f)
|
106 |
+
sam.load_state_dict(state_dict)
|
107 |
+
return sam
|
SAM/modeling/__init__.py
ADDED
@@ -0,0 +1,11 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
2 |
+
# All rights reserved.
|
3 |
+
|
4 |
+
# This source code is licensed under the license found in the
|
5 |
+
# LICENSE file in the root directory of this source tree.
|
6 |
+
|
7 |
+
from .sam import Sam
|
8 |
+
from .mask_decoder import MaskDecoder
|
9 |
+
from .prompt_encoder import PromptEncoder
|
10 |
+
from .transformer import TwoWayTransformer
|
11 |
+
from .image_encoder import ImageEncoderViT
|
SAM/modeling/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (388 Bytes). View file
|
|
SAM/modeling/__pycache__/common.cpython-310.pyc
ADDED
Binary file (1.74 kB). View file
|
|
SAM/modeling/__pycache__/image_encoder.cpython-310.pyc
ADDED
Binary file (12.6 kB). View file
|
|
SAM/modeling/__pycache__/mask_decoder.cpython-310.pyc
ADDED
Binary file (5.94 kB). View file
|
|
SAM/modeling/__pycache__/prompt_encoder.cpython-310.pyc
ADDED
Binary file (7.67 kB). View file
|
|
SAM/modeling/__pycache__/sam.cpython-310.pyc
ADDED
Binary file (6.76 kB). View file
|
|
SAM/modeling/__pycache__/transformer.cpython-310.pyc
ADDED
Binary file (6.6 kB). View file
|
|
SAM/modeling/common.py
ADDED
@@ -0,0 +1,43 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
2 |
+
# All rights reserved.
|
3 |
+
|
4 |
+
# This source code is licensed under the license found in the
|
5 |
+
# LICENSE file in the root directory of this source tree.
|
6 |
+
|
7 |
+
import torch
|
8 |
+
import torch.nn as nn
|
9 |
+
|
10 |
+
from typing import Type
|
11 |
+
|
12 |
+
|
13 |
+
class MLPBlock(nn.Module):
|
14 |
+
def __init__(
|
15 |
+
self,
|
16 |
+
embedding_dim: int,
|
17 |
+
mlp_dim: int,
|
18 |
+
act: Type[nn.Module] = nn.GELU,
|
19 |
+
) -> None:
|
20 |
+
super().__init__()
|
21 |
+
self.lin1 = nn.Linear(embedding_dim, mlp_dim)
|
22 |
+
self.lin2 = nn.Linear(mlp_dim, embedding_dim)
|
23 |
+
self.act = act()
|
24 |
+
|
25 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
26 |
+
return self.lin2(self.act(self.lin1(x)))
|
27 |
+
|
28 |
+
|
29 |
+
# From https://github.com/facebookresearch/detectron2/blob/main/detectron2/layers/batch_norm.py # noqa
|
30 |
+
# Itself from https://github.com/facebookresearch/ConvNeXt/blob/d1fa8f6fef0a165b27399986cc2bdacc92777e40/models/convnext.py#L119 # noqa
|
31 |
+
class LayerNorm2d(nn.Module):
|
32 |
+
def __init__(self, num_channels: int, eps: float = 1e-6) -> None:
|
33 |
+
super().__init__()
|
34 |
+
self.weight = nn.Parameter(torch.ones(num_channels))
|
35 |
+
self.bias = nn.Parameter(torch.zeros(num_channels))
|
36 |
+
self.eps = eps
|
37 |
+
|
38 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
39 |
+
u = x.mean(1, keepdim=True)
|
40 |
+
s = (x - u).pow(2).mean(1, keepdim=True)
|
41 |
+
x = (x - u) / torch.sqrt(s + self.eps)
|
42 |
+
x = self.weight[:, None, None] * x + self.bias[:, None, None]
|
43 |
+
return x
|
SAM/modeling/image_encoder.py
ADDED
@@ -0,0 +1,395 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
2 |
+
# All rights reserved.
|
3 |
+
|
4 |
+
# This source code is licensed under the license found in the
|
5 |
+
# LICENSE file in the root directory of this source tree.
|
6 |
+
|
7 |
+
import torch
|
8 |
+
import torch.nn as nn
|
9 |
+
import torch.nn.functional as F
|
10 |
+
|
11 |
+
from typing import Optional, Tuple, Type
|
12 |
+
|
13 |
+
from .common import LayerNorm2d, MLPBlock
|
14 |
+
|
15 |
+
|
16 |
+
# This class and its supporting functions below lightly adapted from the ViTDet backbone available at: https://github.com/facebookresearch/detectron2/blob/main/detectron2/modeling/backbone/vit.py # noqa
|
17 |
+
class ImageEncoderViT(nn.Module):
|
18 |
+
def __init__(
|
19 |
+
self,
|
20 |
+
img_size: int = 1024,
|
21 |
+
patch_size: int = 16,
|
22 |
+
in_chans: int = 3,
|
23 |
+
embed_dim: int = 768,
|
24 |
+
depth: int = 12,
|
25 |
+
num_heads: int = 12,
|
26 |
+
mlp_ratio: float = 4.0,
|
27 |
+
out_chans: int = 256,
|
28 |
+
qkv_bias: bool = True,
|
29 |
+
norm_layer: Type[nn.Module] = nn.LayerNorm,
|
30 |
+
act_layer: Type[nn.Module] = nn.GELU,
|
31 |
+
use_abs_pos: bool = True,
|
32 |
+
use_rel_pos: bool = False,
|
33 |
+
rel_pos_zero_init: bool = True,
|
34 |
+
window_size: int = 0,
|
35 |
+
global_attn_indexes: Tuple[int, ...] = (),
|
36 |
+
) -> None:
|
37 |
+
"""
|
38 |
+
Args:
|
39 |
+
img_size (int): Input image size.
|
40 |
+
patch_size (int): Patch size.
|
41 |
+
in_chans (int): Number of input image channels.
|
42 |
+
embed_dim (int): Patch embedding dimension.
|
43 |
+
depth (int): Depth of ViT.
|
44 |
+
num_heads (int): Number of attention heads in each ViT block.
|
45 |
+
mlp_ratio (float): Ratio of mlp hidden dim to embedding dim.
|
46 |
+
qkv_bias (bool): If True, add a learnable bias to query, key, value.
|
47 |
+
norm_layer (nn.Module): Normalization layer.
|
48 |
+
act_layer (nn.Module): Activation layer.
|
49 |
+
use_abs_pos (bool): If True, use absolute positional embeddings.
|
50 |
+
use_rel_pos (bool): If True, add relative positional embeddings to the attention map.
|
51 |
+
rel_pos_zero_init (bool): If True, zero initialize relative positional parameters.
|
52 |
+
window_size (int): Window size for window attention blocks.
|
53 |
+
global_attn_indexes (list): Indexes for blocks using global attention.
|
54 |
+
"""
|
55 |
+
super().__init__()
|
56 |
+
self.img_size = img_size
|
57 |
+
|
58 |
+
self.patch_embed = PatchEmbed(
|
59 |
+
kernel_size=(patch_size, patch_size),
|
60 |
+
stride=(patch_size, patch_size),
|
61 |
+
in_chans=in_chans,
|
62 |
+
embed_dim=embed_dim,
|
63 |
+
)
|
64 |
+
|
65 |
+
self.pos_embed: Optional[nn.Parameter] = None
|
66 |
+
if use_abs_pos:
|
67 |
+
# Initialize absolute positional embedding with pretrain image size.
|
68 |
+
self.pos_embed = nn.Parameter(
|
69 |
+
torch.zeros(1, img_size // patch_size, img_size // patch_size, embed_dim)
|
70 |
+
)
|
71 |
+
|
72 |
+
self.blocks = nn.ModuleList()
|
73 |
+
for i in range(depth):
|
74 |
+
block = Block(
|
75 |
+
dim=embed_dim,
|
76 |
+
num_heads=num_heads,
|
77 |
+
mlp_ratio=mlp_ratio,
|
78 |
+
qkv_bias=qkv_bias,
|
79 |
+
norm_layer=norm_layer,
|
80 |
+
act_layer=act_layer,
|
81 |
+
use_rel_pos=use_rel_pos,
|
82 |
+
rel_pos_zero_init=rel_pos_zero_init,
|
83 |
+
window_size=window_size if i not in global_attn_indexes else 0,
|
84 |
+
input_size=(img_size // patch_size, img_size // patch_size),
|
85 |
+
)
|
86 |
+
self.blocks.append(block)
|
87 |
+
|
88 |
+
self.neck = nn.Sequential(
|
89 |
+
nn.Conv2d(
|
90 |
+
embed_dim,
|
91 |
+
out_chans,
|
92 |
+
kernel_size=1,
|
93 |
+
bias=False,
|
94 |
+
),
|
95 |
+
LayerNorm2d(out_chans),
|
96 |
+
nn.Conv2d(
|
97 |
+
out_chans,
|
98 |
+
out_chans,
|
99 |
+
kernel_size=3,
|
100 |
+
padding=1,
|
101 |
+
bias=False,
|
102 |
+
),
|
103 |
+
LayerNorm2d(out_chans),
|
104 |
+
)
|
105 |
+
|
106 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
107 |
+
x = self.patch_embed(x)
|
108 |
+
if self.pos_embed is not None:
|
109 |
+
x = x + self.pos_embed
|
110 |
+
|
111 |
+
for blk in self.blocks:
|
112 |
+
x = blk(x)
|
113 |
+
|
114 |
+
x = self.neck(x.permute(0, 3, 1, 2))
|
115 |
+
|
116 |
+
return x
|
117 |
+
|
118 |
+
|
119 |
+
class Block(nn.Module):
|
120 |
+
"""Transformer blocks with support of window attention and residual propagation blocks"""
|
121 |
+
|
122 |
+
def __init__(
|
123 |
+
self,
|
124 |
+
dim: int,
|
125 |
+
num_heads: int,
|
126 |
+
mlp_ratio: float = 4.0,
|
127 |
+
qkv_bias: bool = True,
|
128 |
+
norm_layer: Type[nn.Module] = nn.LayerNorm,
|
129 |
+
act_layer: Type[nn.Module] = nn.GELU,
|
130 |
+
use_rel_pos: bool = False,
|
131 |
+
rel_pos_zero_init: bool = True,
|
132 |
+
window_size: int = 0,
|
133 |
+
input_size: Optional[Tuple[int, int]] = None,
|
134 |
+
) -> None:
|
135 |
+
"""
|
136 |
+
Args:
|
137 |
+
dim (int): Number of input channels.
|
138 |
+
num_heads (int): Number of attention heads in each ViT block.
|
139 |
+
mlp_ratio (float): Ratio of mlp hidden dim to embedding dim.
|
140 |
+
qkv_bias (bool): If True, add a learnable bias to query, key, value.
|
141 |
+
norm_layer (nn.Module): Normalization layer.
|
142 |
+
act_layer (nn.Module): Activation layer.
|
143 |
+
use_rel_pos (bool): If True, add relative positional embeddings to the attention map.
|
144 |
+
rel_pos_zero_init (bool): If True, zero initialize relative positional parameters.
|
145 |
+
window_size (int): Window size for window attention blocks. If it equals 0, then
|
146 |
+
use global attention.
|
147 |
+
input_size (tuple(int, int) or None): Input resolution for calculating the relative
|
148 |
+
positional parameter size.
|
149 |
+
"""
|
150 |
+
super().__init__()
|
151 |
+
self.norm1 = norm_layer(dim)
|
152 |
+
self.attn = Attention(
|
153 |
+
dim,
|
154 |
+
num_heads=num_heads,
|
155 |
+
qkv_bias=qkv_bias,
|
156 |
+
use_rel_pos=use_rel_pos,
|
157 |
+
rel_pos_zero_init=rel_pos_zero_init,
|
158 |
+
input_size=input_size if window_size == 0 else (window_size, window_size),
|
159 |
+
)
|
160 |
+
|
161 |
+
self.norm2 = norm_layer(dim)
|
162 |
+
self.mlp = MLPBlock(embedding_dim=dim, mlp_dim=int(dim * mlp_ratio), act=act_layer)
|
163 |
+
|
164 |
+
self.window_size = window_size
|
165 |
+
|
166 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
167 |
+
shortcut = x
|
168 |
+
x = self.norm1(x)
|
169 |
+
# Window partition
|
170 |
+
if self.window_size > 0:
|
171 |
+
H, W = x.shape[1], x.shape[2]
|
172 |
+
x, pad_hw = window_partition(x, self.window_size)
|
173 |
+
|
174 |
+
x = self.attn(x)
|
175 |
+
# Reverse window partition
|
176 |
+
if self.window_size > 0:
|
177 |
+
x = window_unpartition(x, self.window_size, pad_hw, (H, W))
|
178 |
+
|
179 |
+
x = shortcut + x
|
180 |
+
x = x + self.mlp(self.norm2(x))
|
181 |
+
|
182 |
+
return x
|
183 |
+
|
184 |
+
|
185 |
+
class Attention(nn.Module):
|
186 |
+
"""Multi-head Attention block with relative position embeddings."""
|
187 |
+
|
188 |
+
def __init__(
|
189 |
+
self,
|
190 |
+
dim: int,
|
191 |
+
num_heads: int = 8,
|
192 |
+
qkv_bias: bool = True,
|
193 |
+
use_rel_pos: bool = False,
|
194 |
+
rel_pos_zero_init: bool = True,
|
195 |
+
input_size: Optional[Tuple[int, int]] = None,
|
196 |
+
) -> None:
|
197 |
+
"""
|
198 |
+
Args:
|
199 |
+
dim (int): Number of input channels.
|
200 |
+
num_heads (int): Number of attention heads.
|
201 |
+
qkv_bias (bool): If True, add a learnable bias to query, key, value.
|
202 |
+
rel_pos (bool): If True, add relative positional embeddings to the attention map.
|
203 |
+
rel_pos_zero_init (bool): If True, zero initialize relative positional parameters.
|
204 |
+
input_size (tuple(int, int) or None): Input resolution for calculating the relative
|
205 |
+
positional parameter size.
|
206 |
+
"""
|
207 |
+
super().__init__()
|
208 |
+
self.num_heads = num_heads
|
209 |
+
head_dim = dim // num_heads
|
210 |
+
self.scale = head_dim**-0.5
|
211 |
+
|
212 |
+
self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
|
213 |
+
self.proj = nn.Linear(dim, dim)
|
214 |
+
|
215 |
+
self.use_rel_pos = use_rel_pos
|
216 |
+
if self.use_rel_pos:
|
217 |
+
assert (
|
218 |
+
input_size is not None
|
219 |
+
), "Input size must be provided if using relative positional encoding."
|
220 |
+
# initialize relative positional embeddings
|
221 |
+
self.rel_pos_h = nn.Parameter(torch.zeros(2 * input_size[0] - 1, head_dim))
|
222 |
+
self.rel_pos_w = nn.Parameter(torch.zeros(2 * input_size[1] - 1, head_dim))
|
223 |
+
|
224 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
225 |
+
B, H, W, _ = x.shape
|
226 |
+
# qkv with shape (3, B, nHead, H * W, C)
|
227 |
+
qkv = self.qkv(x).reshape(B, H * W, 3, self.num_heads, -1).permute(2, 0, 3, 1, 4)
|
228 |
+
# q, k, v with shape (B * nHead, H * W, C)
|
229 |
+
q, k, v = qkv.reshape(3, B * self.num_heads, H * W, -1).unbind(0)
|
230 |
+
|
231 |
+
attn = (q * self.scale) @ k.transpose(-2, -1)
|
232 |
+
|
233 |
+
if self.use_rel_pos:
|
234 |
+
attn = add_decomposed_rel_pos(attn, q, self.rel_pos_h, self.rel_pos_w, (H, W), (H, W))
|
235 |
+
|
236 |
+
attn = attn.softmax(dim=-1)
|
237 |
+
x = (attn @ v).view(B, self.num_heads, H, W, -1).permute(0, 2, 3, 1, 4).reshape(B, H, W, -1)
|
238 |
+
x = self.proj(x)
|
239 |
+
|
240 |
+
return x
|
241 |
+
|
242 |
+
|
243 |
+
def window_partition(x: torch.Tensor, window_size: int) -> Tuple[torch.Tensor, Tuple[int, int]]:
|
244 |
+
"""
|
245 |
+
Partition into non-overlapping windows with padding if needed.
|
246 |
+
Args:
|
247 |
+
x (tensor): input tokens with [B, H, W, C].
|
248 |
+
window_size (int): window size.
|
249 |
+
|
250 |
+
Returns:
|
251 |
+
windows: windows after partition with [B * num_windows, window_size, window_size, C].
|
252 |
+
(Hp, Wp): padded height and width before partition
|
253 |
+
"""
|
254 |
+
B, H, W, C = x.shape
|
255 |
+
|
256 |
+
pad_h = (window_size - H % window_size) % window_size
|
257 |
+
pad_w = (window_size - W % window_size) % window_size
|
258 |
+
if pad_h > 0 or pad_w > 0:
|
259 |
+
x = F.pad(x, (0, 0, 0, pad_w, 0, pad_h))
|
260 |
+
Hp, Wp = H + pad_h, W + pad_w
|
261 |
+
|
262 |
+
x = x.view(B, Hp // window_size, window_size, Wp // window_size, window_size, C)
|
263 |
+
windows = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(-1, window_size, window_size, C)
|
264 |
+
return windows, (Hp, Wp)
|
265 |
+
|
266 |
+
|
267 |
+
def window_unpartition(
|
268 |
+
windows: torch.Tensor, window_size: int, pad_hw: Tuple[int, int], hw: Tuple[int, int]
|
269 |
+
) -> torch.Tensor:
|
270 |
+
"""
|
271 |
+
Window unpartition into original sequences and removing padding.
|
272 |
+
Args:
|
273 |
+
windows (tensor): input tokens with [B * num_windows, window_size, window_size, C].
|
274 |
+
window_size (int): window size.
|
275 |
+
pad_hw (Tuple): padded height and width (Hp, Wp).
|
276 |
+
hw (Tuple): original height and width (H, W) before padding.
|
277 |
+
|
278 |
+
Returns:
|
279 |
+
x: unpartitioned sequences with [B, H, W, C].
|
280 |
+
"""
|
281 |
+
Hp, Wp = pad_hw
|
282 |
+
H, W = hw
|
283 |
+
B = windows.shape[0] // (Hp * Wp // window_size // window_size)
|
284 |
+
x = windows.view(B, Hp // window_size, Wp // window_size, window_size, window_size, -1)
|
285 |
+
x = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(B, Hp, Wp, -1)
|
286 |
+
|
287 |
+
if Hp > H or Wp > W:
|
288 |
+
x = x[:, :H, :W, :].contiguous()
|
289 |
+
return x
|
290 |
+
|
291 |
+
|
292 |
+
def get_rel_pos(q_size: int, k_size: int, rel_pos: torch.Tensor) -> torch.Tensor:
|
293 |
+
"""
|
294 |
+
Get relative positional embeddings according to the relative positions of
|
295 |
+
query and key sizes.
|
296 |
+
Args:
|
297 |
+
q_size (int): size of query q.
|
298 |
+
k_size (int): size of key k.
|
299 |
+
rel_pos (Tensor): relative position embeddings (L, C).
|
300 |
+
|
301 |
+
Returns:
|
302 |
+
Extracted positional embeddings according to relative positions.
|
303 |
+
"""
|
304 |
+
max_rel_dist = int(2 * max(q_size, k_size) - 1)
|
305 |
+
# Interpolate rel pos if needed.
|
306 |
+
if rel_pos.shape[0] != max_rel_dist:
|
307 |
+
# Interpolate rel pos.
|
308 |
+
rel_pos_resized = F.interpolate(
|
309 |
+
rel_pos.reshape(1, rel_pos.shape[0], -1).permute(0, 2, 1),
|
310 |
+
size=max_rel_dist,
|
311 |
+
mode="linear",
|
312 |
+
)
|
313 |
+
rel_pos_resized = rel_pos_resized.reshape(-1, max_rel_dist).permute(1, 0)
|
314 |
+
else:
|
315 |
+
rel_pos_resized = rel_pos
|
316 |
+
|
317 |
+
# Scale the coords with short length if shapes for q and k are different.
|
318 |
+
q_coords = torch.arange(q_size)[:, None] * max(k_size / q_size, 1.0)
|
319 |
+
k_coords = torch.arange(k_size)[None, :] * max(q_size / k_size, 1.0)
|
320 |
+
relative_coords = (q_coords - k_coords) + (k_size - 1) * max(q_size / k_size, 1.0)
|
321 |
+
|
322 |
+
return rel_pos_resized[relative_coords.long()]
|
323 |
+
|
324 |
+
|
325 |
+
def add_decomposed_rel_pos(
|
326 |
+
attn: torch.Tensor,
|
327 |
+
q: torch.Tensor,
|
328 |
+
rel_pos_h: torch.Tensor,
|
329 |
+
rel_pos_w: torch.Tensor,
|
330 |
+
q_size: Tuple[int, int],
|
331 |
+
k_size: Tuple[int, int],
|
332 |
+
) -> torch.Tensor:
|
333 |
+
"""
|
334 |
+
Calculate decomposed Relative Positional Embeddings from :paper:`mvitv2`.
|
335 |
+
https://github.com/facebookresearch/mvit/blob/19786631e330df9f3622e5402b4a419a263a2c80/mvit/models/attention.py # noqa B950
|
336 |
+
Args:
|
337 |
+
attn (Tensor): attention map.
|
338 |
+
q (Tensor): query q in the attention layer with shape (B, q_h * q_w, C).
|
339 |
+
rel_pos_h (Tensor): relative position embeddings (Lh, C) for height axis.
|
340 |
+
rel_pos_w (Tensor): relative position embeddings (Lw, C) for width axis.
|
341 |
+
q_size (Tuple): spatial sequence size of query q with (q_h, q_w).
|
342 |
+
k_size (Tuple): spatial sequence size of key k with (k_h, k_w).
|
343 |
+
|
344 |
+
Returns:
|
345 |
+
attn (Tensor): attention map with added relative positional embeddings.
|
346 |
+
"""
|
347 |
+
q_h, q_w = q_size
|
348 |
+
k_h, k_w = k_size
|
349 |
+
Rh = get_rel_pos(q_h, k_h, rel_pos_h)
|
350 |
+
Rw = get_rel_pos(q_w, k_w, rel_pos_w)
|
351 |
+
|
352 |
+
B, _, dim = q.shape
|
353 |
+
r_q = q.reshape(B, q_h, q_w, dim)
|
354 |
+
rel_h = torch.einsum("bhwc,hkc->bhwk", r_q, Rh)
|
355 |
+
rel_w = torch.einsum("bhwc,wkc->bhwk", r_q, Rw)
|
356 |
+
|
357 |
+
attn = (
|
358 |
+
attn.view(B, q_h, q_w, k_h, k_w) + rel_h[:, :, :, :, None] + rel_w[:, :, :, None, :]
|
359 |
+
).view(B, q_h * q_w, k_h * k_w)
|
360 |
+
|
361 |
+
return attn
|
362 |
+
|
363 |
+
|
364 |
+
class PatchEmbed(nn.Module):
|
365 |
+
"""
|
366 |
+
Image to Patch Embedding.
|
367 |
+
"""
|
368 |
+
|
369 |
+
def __init__(
|
370 |
+
self,
|
371 |
+
kernel_size: Tuple[int, int] = (16, 16),
|
372 |
+
stride: Tuple[int, int] = (16, 16),
|
373 |
+
padding: Tuple[int, int] = (0, 0),
|
374 |
+
in_chans: int = 3,
|
375 |
+
embed_dim: int = 768,
|
376 |
+
) -> None:
|
377 |
+
"""
|
378 |
+
Args:
|
379 |
+
kernel_size (Tuple): kernel size of the projection layer.
|
380 |
+
stride (Tuple): stride of the projection layer.
|
381 |
+
padding (Tuple): padding size of the projection layer.
|
382 |
+
in_chans (int): Number of input image channels.
|
383 |
+
embed_dim (int): Patch embedding dimension.
|
384 |
+
"""
|
385 |
+
super().__init__()
|
386 |
+
|
387 |
+
self.proj = nn.Conv2d(
|
388 |
+
in_chans, embed_dim, kernel_size=kernel_size, stride=stride, padding=padding
|
389 |
+
)
|
390 |
+
|
391 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
392 |
+
x = self.proj(x)
|
393 |
+
# B C H W -> B H W C
|
394 |
+
x = x.permute(0, 2, 3, 1)
|
395 |
+
return x
|
SAM/modeling/mask_decoder.py
ADDED
@@ -0,0 +1,192 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
2 |
+
# All rights reserved.
|
3 |
+
|
4 |
+
# This source code is licensed under the license found in the
|
5 |
+
# LICENSE file in the root directory of this source tree.
|
6 |
+
|
7 |
+
import torch
|
8 |
+
from torch import nn
|
9 |
+
from torch.nn import functional as F
|
10 |
+
|
11 |
+
from typing import List, Tuple, Type
|
12 |
+
|
13 |
+
from .common import LayerNorm2d
|
14 |
+
|
15 |
+
|
16 |
+
class MaskDecoder(nn.Module):
|
17 |
+
def __init__(
|
18 |
+
self,
|
19 |
+
*,
|
20 |
+
transformer_dim: int,
|
21 |
+
transformer: nn.Module,
|
22 |
+
num_multimask_outputs: int = 3,
|
23 |
+
activation: Type[nn.Module] = nn.GELU,
|
24 |
+
iou_head_depth: int = 3,
|
25 |
+
iou_head_hidden_dim: int = 256,
|
26 |
+
) -> None:
|
27 |
+
"""
|
28 |
+
Predicts masks given an image and prompt embeddings, using a
|
29 |
+
transformer architecture.
|
30 |
+
|
31 |
+
Arguments:
|
32 |
+
transformer_dim (int): the channel dimension of the transformer
|
33 |
+
transformer (nn.Module): the transformer used to predict masks
|
34 |
+
num_multimask_outputs (int): the number of masks to predict
|
35 |
+
when disambiguating masks
|
36 |
+
activation (nn.Module): the type of activation to use when
|
37 |
+
upscaling masks
|
38 |
+
iou_head_depth (int): the depth of the MLP used to predict
|
39 |
+
mask quality
|
40 |
+
iou_head_hidden_dim (int): the hidden dimension of the MLP
|
41 |
+
used to predict mask quality
|
42 |
+
"""
|
43 |
+
super().__init__()
|
44 |
+
self.transformer_dim = transformer_dim
|
45 |
+
self.transformer = transformer
|
46 |
+
|
47 |
+
self.num_multimask_outputs = num_multimask_outputs
|
48 |
+
|
49 |
+
self.iou_token = nn.Embedding(1, transformer_dim)
|
50 |
+
self.num_mask_tokens = num_multimask_outputs + 1
|
51 |
+
self.mask_tokens = nn.Embedding(self.num_mask_tokens, transformer_dim)
|
52 |
+
|
53 |
+
self.output_upscaling = nn.Sequential(
|
54 |
+
nn.ConvTranspose2d(transformer_dim, transformer_dim // 4, kernel_size=2, stride=2),
|
55 |
+
LayerNorm2d(transformer_dim // 4),
|
56 |
+
activation(),
|
57 |
+
nn.ConvTranspose2d(transformer_dim // 4, transformer_dim // 8, kernel_size=2, stride=2),
|
58 |
+
activation(),
|
59 |
+
)
|
60 |
+
self.output_hypernetworks_mlps = nn.ModuleList(
|
61 |
+
[
|
62 |
+
MLP(transformer_dim, transformer_dim, transformer_dim // 8, 3)
|
63 |
+
for i in range(self.num_mask_tokens)
|
64 |
+
]
|
65 |
+
)
|
66 |
+
|
67 |
+
self.iou_prediction_head = MLP(
|
68 |
+
transformer_dim, iou_head_hidden_dim, self.num_mask_tokens, iou_head_depth
|
69 |
+
)
|
70 |
+
|
71 |
+
def forward(
|
72 |
+
self,
|
73 |
+
image_embeddings: torch.Tensor,
|
74 |
+
image_pe: torch.Tensor,
|
75 |
+
sparse_prompt_embeddings: torch.Tensor,
|
76 |
+
dense_prompt_embeddings: torch.Tensor,
|
77 |
+
multimask_output: bool,
|
78 |
+
batch_ind_list: List[int] = None,
|
79 |
+
) -> Tuple[torch.Tensor, torch.Tensor]:
|
80 |
+
"""
|
81 |
+
Predict masks given image and prompt embeddings.
|
82 |
+
|
83 |
+
Arguments:
|
84 |
+
image_embeddings (torch.Tensor): the embeddings from the image encoder
|
85 |
+
image_pe (torch.Tensor): positional encoding with the shape of image_embeddings
|
86 |
+
sparse_prompt_embeddings (torch.Tensor): the embeddings of the points and boxes
|
87 |
+
dense_prompt_embeddings (torch.Tensor): the embeddings of the mask inputs
|
88 |
+
multimask_output (bool): Whether to return multiple masks or a single
|
89 |
+
mask.
|
90 |
+
|
91 |
+
Returns:
|
92 |
+
torch.Tensor: batched predicted masks
|
93 |
+
torch.Tensor: batched predictions of mask quality
|
94 |
+
"""
|
95 |
+
masks, iou_pred = self.predict_masks(
|
96 |
+
image_embeddings=image_embeddings,
|
97 |
+
image_pe=image_pe,
|
98 |
+
sparse_prompt_embeddings=sparse_prompt_embeddings,
|
99 |
+
dense_prompt_embeddings=dense_prompt_embeddings,
|
100 |
+
batch_ind_list=batch_ind_list,
|
101 |
+
)
|
102 |
+
|
103 |
+
# Select the correct mask or masks for output
|
104 |
+
if multimask_output:
|
105 |
+
mask_slice = slice(1, None)
|
106 |
+
else:
|
107 |
+
mask_slice = slice(0, 1)
|
108 |
+
masks = masks[:, mask_slice, :, :]
|
109 |
+
iou_pred = iou_pred[:, mask_slice]
|
110 |
+
|
111 |
+
# Prepare output
|
112 |
+
return masks, iou_pred
|
113 |
+
|
114 |
+
def predict_masks(
|
115 |
+
self,
|
116 |
+
image_embeddings: torch.Tensor,
|
117 |
+
image_pe: torch.Tensor,
|
118 |
+
sparse_prompt_embeddings: torch.Tensor,
|
119 |
+
dense_prompt_embeddings: torch.Tensor,
|
120 |
+
batch_ind_list: List[int],
|
121 |
+
) -> Tuple[torch.Tensor, torch.Tensor]:
|
122 |
+
"""Predicts masks. See 'forward' for more details."""
|
123 |
+
# Concatenate output tokens
|
124 |
+
if batch_ind_list is None:
|
125 |
+
output_tokens = torch.cat([self.iou_token.weight, self.mask_tokens.weight], dim=0)
|
126 |
+
output_tokens = output_tokens.unsqueeze(0).expand(sparse_prompt_embeddings.size(0), -1, -1)
|
127 |
+
tokens = torch.cat((output_tokens, sparse_prompt_embeddings), dim=1)
|
128 |
+
|
129 |
+
# Expand per-image data in batch direction to be per-mask
|
130 |
+
src = torch.repeat_interleave(image_embeddings, tokens.shape[0], dim=0)
|
131 |
+
src = src + dense_prompt_embeddings
|
132 |
+
pos_src = torch.repeat_interleave(image_pe, tokens.shape[0], dim=0)
|
133 |
+
b, c, h, w = src.shape
|
134 |
+
else:
|
135 |
+
num_instances = int(sparse_prompt_embeddings.size(0))
|
136 |
+
output_tokens = torch.cat([self.iou_token.weight, self.mask_tokens.weight], dim=0)
|
137 |
+
output_tokens = output_tokens.unsqueeze(0).expand(num_instances, -1, -1)
|
138 |
+
tokens = torch.cat((output_tokens, sparse_prompt_embeddings), dim=1)
|
139 |
+
|
140 |
+
# Expand per-image data in batch direction to be per-mask
|
141 |
+
image_embeddings = torch.cat([image_embeddings[i].unsqueeze(0).repeat(n, 1, 1, 1) for i, n in enumerate(batch_ind_list)], dim=0)
|
142 |
+
src = image_embeddings
|
143 |
+
src = src + dense_prompt_embeddings
|
144 |
+
pos_src = torch.repeat_interleave(image_pe, num_instances, dim=0)
|
145 |
+
b, c, h, w = src.shape
|
146 |
+
|
147 |
+
# Run the transformer
|
148 |
+
hs, src = self.transformer(src, pos_src, tokens)
|
149 |
+
iou_token_out = hs[:, 0, :]
|
150 |
+
mask_tokens_out = hs[:, 1 : (1 + self.num_mask_tokens), :]
|
151 |
+
|
152 |
+
# Upscale mask embeddings and predict masks using the mask tokens
|
153 |
+
src = src.transpose(1, 2).view(b, c, h, w)
|
154 |
+
upscaled_embedding = self.output_upscaling(src)
|
155 |
+
hyper_in_list: List[torch.Tensor] = []
|
156 |
+
for i in range(self.num_mask_tokens):
|
157 |
+
hyper_in_list.append(self.output_hypernetworks_mlps[i](mask_tokens_out[:, i, :]))
|
158 |
+
hyper_in = torch.stack(hyper_in_list, dim=1)
|
159 |
+
b, c, h, w = upscaled_embedding.shape
|
160 |
+
masks = (hyper_in @ upscaled_embedding.view(b, c, h * w)).view(b, -1, h, w)
|
161 |
+
|
162 |
+
# Generate mask quality predictions
|
163 |
+
iou_pred = self.iou_prediction_head(iou_token_out)
|
164 |
+
|
165 |
+
return masks, iou_pred
|
166 |
+
|
167 |
+
|
168 |
+
# Lightly adapted from
|
169 |
+
# https://github.com/facebookresearch/MaskFormer/blob/main/mask_former/modeling/transformer/transformer_predictor.py # noqa
|
170 |
+
class MLP(nn.Module):
|
171 |
+
def __init__(
|
172 |
+
self,
|
173 |
+
input_dim: int,
|
174 |
+
hidden_dim: int,
|
175 |
+
output_dim: int,
|
176 |
+
num_layers: int,
|
177 |
+
sigmoid_output: bool = False,
|
178 |
+
) -> None:
|
179 |
+
super().__init__()
|
180 |
+
self.num_layers = num_layers
|
181 |
+
h = [hidden_dim] * (num_layers - 1)
|
182 |
+
self.layers = nn.ModuleList(
|
183 |
+
nn.Linear(n, k) for n, k in zip([input_dim] + h, h + [output_dim])
|
184 |
+
)
|
185 |
+
self.sigmoid_output = sigmoid_output
|
186 |
+
|
187 |
+
def forward(self, x):
|
188 |
+
for i, layer in enumerate(self.layers):
|
189 |
+
x = F.relu(layer(x)) if i < self.num_layers - 1 else layer(x)
|
190 |
+
if self.sigmoid_output:
|
191 |
+
x = F.sigmoid(x)
|
192 |
+
return x
|
SAM/modeling/prompt_encoder.py
ADDED
@@ -0,0 +1,214 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
2 |
+
# All rights reserved.
|
3 |
+
|
4 |
+
# This source code is licensed under the license found in the
|
5 |
+
# LICENSE file in the root directory of this source tree.
|
6 |
+
|
7 |
+
import numpy as np
|
8 |
+
import torch
|
9 |
+
from torch import nn
|
10 |
+
|
11 |
+
from typing import Any, Optional, Tuple, Type
|
12 |
+
|
13 |
+
from .common import LayerNorm2d
|
14 |
+
|
15 |
+
|
16 |
+
class PromptEncoder(nn.Module):
|
17 |
+
def __init__(
|
18 |
+
self,
|
19 |
+
embed_dim: int,
|
20 |
+
image_embedding_size: Tuple[int, int],
|
21 |
+
input_image_size: Tuple[int, int],
|
22 |
+
mask_in_chans: int,
|
23 |
+
activation: Type[nn.Module] = nn.GELU,
|
24 |
+
) -> None:
|
25 |
+
"""
|
26 |
+
Encodes prompts for input to SAM's mask decoder.
|
27 |
+
|
28 |
+
Arguments:
|
29 |
+
embed_dim (int): The prompts' embedding dimension
|
30 |
+
image_embedding_size (tuple(int, int)): The spatial size of the
|
31 |
+
image embedding, as (H, W).
|
32 |
+
input_image_size (int): The padded size of the image as input
|
33 |
+
to the image encoder, as (H, W).
|
34 |
+
mask_in_chans (int): The number of hidden channels used for
|
35 |
+
encoding input masks.
|
36 |
+
activation (nn.Module): The activation to use when encoding
|
37 |
+
input masks.
|
38 |
+
"""
|
39 |
+
super().__init__()
|
40 |
+
self.embed_dim = embed_dim
|
41 |
+
self.input_image_size = input_image_size
|
42 |
+
self.image_embedding_size = image_embedding_size
|
43 |
+
self.pe_layer = PositionEmbeddingRandom(embed_dim // 2)
|
44 |
+
|
45 |
+
self.num_point_embeddings: int = 4 # pos/neg point + 2 box corners
|
46 |
+
point_embeddings = [nn.Embedding(1, embed_dim) for i in range(self.num_point_embeddings)]
|
47 |
+
self.point_embeddings = nn.ModuleList(point_embeddings)
|
48 |
+
self.not_a_point_embed = nn.Embedding(1, embed_dim)
|
49 |
+
|
50 |
+
self.mask_input_size = (4 * image_embedding_size[0], 4 * image_embedding_size[1])
|
51 |
+
self.mask_downscaling = nn.Sequential(
|
52 |
+
nn.Conv2d(1, mask_in_chans // 4, kernel_size=2, stride=2),
|
53 |
+
LayerNorm2d(mask_in_chans // 4),
|
54 |
+
activation(),
|
55 |
+
nn.Conv2d(mask_in_chans // 4, mask_in_chans, kernel_size=2, stride=2),
|
56 |
+
LayerNorm2d(mask_in_chans),
|
57 |
+
activation(),
|
58 |
+
nn.Conv2d(mask_in_chans, embed_dim, kernel_size=1),
|
59 |
+
)
|
60 |
+
self.no_mask_embed = nn.Embedding(1, embed_dim)
|
61 |
+
|
62 |
+
def get_dense_pe(self) -> torch.Tensor:
|
63 |
+
"""
|
64 |
+
Returns the positional encoding used to encode point prompts,
|
65 |
+
applied to a dense set of points the shape of the image encoding.
|
66 |
+
|
67 |
+
Returns:
|
68 |
+
torch.Tensor: Positional encoding with shape
|
69 |
+
1x(embed_dim)x(embedding_h)x(embedding_w)
|
70 |
+
"""
|
71 |
+
return self.pe_layer(self.image_embedding_size).unsqueeze(0)
|
72 |
+
|
73 |
+
def _embed_points(
|
74 |
+
self,
|
75 |
+
points: torch.Tensor,
|
76 |
+
labels: torch.Tensor,
|
77 |
+
pad: bool,
|
78 |
+
) -> torch.Tensor:
|
79 |
+
"""Embeds point prompts."""
|
80 |
+
points = points + 0.5 # Shift to center of pixel
|
81 |
+
if pad:
|
82 |
+
padding_point = torch.zeros((points.shape[0], 1, 2), device=points.device)
|
83 |
+
padding_label = -torch.ones((labels.shape[0], 1), device=labels.device)
|
84 |
+
points = torch.cat([points, padding_point], dim=1)
|
85 |
+
labels = torch.cat([labels, padding_label], dim=1)
|
86 |
+
point_embedding = self.pe_layer.forward_with_coords(points, self.input_image_size)
|
87 |
+
point_embedding[labels == -1] = 0.0
|
88 |
+
point_embedding[labels == -1] += self.not_a_point_embed.weight
|
89 |
+
point_embedding[labels == 0] += self.point_embeddings[0].weight
|
90 |
+
point_embedding[labels == 1] += self.point_embeddings[1].weight
|
91 |
+
return point_embedding
|
92 |
+
|
93 |
+
def _embed_boxes(self, boxes: torch.Tensor) -> torch.Tensor:
|
94 |
+
"""Embeds box prompts."""
|
95 |
+
boxes = boxes + 0.5 # Shift to center of pixel
|
96 |
+
coords = boxes.reshape(-1, 2, 2)
|
97 |
+
corner_embedding = self.pe_layer.forward_with_coords(coords, self.input_image_size)
|
98 |
+
corner_embedding[:, 0, :] += self.point_embeddings[2].weight
|
99 |
+
corner_embedding[:, 1, :] += self.point_embeddings[3].weight
|
100 |
+
return corner_embedding
|
101 |
+
|
102 |
+
def _embed_masks(self, masks: torch.Tensor) -> torch.Tensor:
|
103 |
+
"""Embeds mask inputs."""
|
104 |
+
mask_embedding = self.mask_downscaling(masks)
|
105 |
+
return mask_embedding
|
106 |
+
|
107 |
+
def _get_batch_size(
|
108 |
+
self,
|
109 |
+
points: Optional[Tuple[torch.Tensor, torch.Tensor]],
|
110 |
+
boxes: Optional[torch.Tensor],
|
111 |
+
masks: Optional[torch.Tensor],
|
112 |
+
) -> int:
|
113 |
+
"""
|
114 |
+
Gets the batch size of the output given the batch size of the input prompts.
|
115 |
+
"""
|
116 |
+
if points is not None:
|
117 |
+
return points[0].shape[0]
|
118 |
+
elif boxes is not None:
|
119 |
+
return boxes.shape[0]
|
120 |
+
elif masks is not None:
|
121 |
+
return masks.shape[0]
|
122 |
+
else:
|
123 |
+
return 1
|
124 |
+
|
125 |
+
def _get_device(self) -> torch.device:
|
126 |
+
return self.point_embeddings[0].weight.device
|
127 |
+
|
128 |
+
def forward(
|
129 |
+
self,
|
130 |
+
points: Optional[Tuple[torch.Tensor, torch.Tensor]],
|
131 |
+
boxes: Optional[torch.Tensor],
|
132 |
+
masks: Optional[torch.Tensor],
|
133 |
+
) -> Tuple[torch.Tensor, torch.Tensor]:
|
134 |
+
"""
|
135 |
+
Embeds different types of prompts, returning both sparse and dense
|
136 |
+
embeddings.
|
137 |
+
|
138 |
+
Arguments:
|
139 |
+
points (tuple(torch.Tensor, torch.Tensor) or none): point coordinates
|
140 |
+
and labels to embed.
|
141 |
+
boxes (torch.Tensor or none): boxes to embed
|
142 |
+
masks (torch.Tensor or none): masks to embed
|
143 |
+
|
144 |
+
Returns:
|
145 |
+
torch.Tensor: sparse embeddings for the points and boxes, with shape
|
146 |
+
BxNx(embed_dim), where N is determined by the number of input points
|
147 |
+
and boxes.
|
148 |
+
torch.Tensor: dense embeddings for the masks, in the shape
|
149 |
+
Bx(embed_dim)x(embed_H)x(embed_W)
|
150 |
+
"""
|
151 |
+
bs = self._get_batch_size(points, boxes, masks)
|
152 |
+
sparse_embeddings = torch.empty((bs, 0, self.embed_dim), device=self._get_device())
|
153 |
+
if points is not None:
|
154 |
+
coords, labels = points
|
155 |
+
point_embeddings = self._embed_points(coords, labels, pad=(boxes is None))
|
156 |
+
sparse_embeddings = torch.cat([sparse_embeddings, point_embeddings], dim=1)
|
157 |
+
if boxes is not None:
|
158 |
+
box_embeddings = self._embed_boxes(boxes)
|
159 |
+
sparse_embeddings = torch.cat([sparse_embeddings, box_embeddings], dim=1)
|
160 |
+
|
161 |
+
if masks is not None:
|
162 |
+
dense_embeddings = self._embed_masks(masks)
|
163 |
+
else:
|
164 |
+
dense_embeddings = self.no_mask_embed.weight.reshape(1, -1, 1, 1).expand(
|
165 |
+
bs, -1, self.image_embedding_size[0], self.image_embedding_size[1]
|
166 |
+
)
|
167 |
+
|
168 |
+
return sparse_embeddings, dense_embeddings
|
169 |
+
|
170 |
+
|
171 |
+
class PositionEmbeddingRandom(nn.Module):
|
172 |
+
"""
|
173 |
+
Positional encoding using random spatial frequencies.
|
174 |
+
"""
|
175 |
+
|
176 |
+
def __init__(self, num_pos_feats: int = 64, scale: Optional[float] = None) -> None:
|
177 |
+
super().__init__()
|
178 |
+
if scale is None or scale <= 0.0:
|
179 |
+
scale = 1.0
|
180 |
+
self.register_buffer(
|
181 |
+
"positional_encoding_gaussian_matrix",
|
182 |
+
scale * torch.randn((2, num_pos_feats)),
|
183 |
+
)
|
184 |
+
|
185 |
+
def _pe_encoding(self, coords: torch.Tensor) -> torch.Tensor:
|
186 |
+
"""Positionally encode points that are normalized to [0,1]."""
|
187 |
+
# assuming coords are in [0, 1]^2 square and have d_1 x ... x d_n x 2 shape
|
188 |
+
coords = 2 * coords - 1
|
189 |
+
coords = coords @ self.positional_encoding_gaussian_matrix
|
190 |
+
coords = 2 * np.pi * coords
|
191 |
+
# outputs d_1 x ... x d_n x C shape
|
192 |
+
return torch.cat([torch.sin(coords), torch.cos(coords)], dim=-1)
|
193 |
+
|
194 |
+
def forward(self, size: Tuple[int, int]) -> torch.Tensor:
|
195 |
+
"""Generate positional encoding for a grid of the specified size."""
|
196 |
+
h, w = size
|
197 |
+
device: Any = self.positional_encoding_gaussian_matrix.device
|
198 |
+
grid = torch.ones((h, w), device=device, dtype=torch.float32)
|
199 |
+
y_embed = grid.cumsum(dim=0) - 0.5
|
200 |
+
x_embed = grid.cumsum(dim=1) - 0.5
|
201 |
+
y_embed = y_embed / h
|
202 |
+
x_embed = x_embed / w
|
203 |
+
|
204 |
+
pe = self._pe_encoding(torch.stack([x_embed, y_embed], dim=-1))
|
205 |
+
return pe.permute(2, 0, 1) # C x H x W
|
206 |
+
|
207 |
+
def forward_with_coords(
|
208 |
+
self, coords_input: torch.Tensor, image_size: Tuple[int, int]
|
209 |
+
) -> torch.Tensor:
|
210 |
+
"""Positionally encode points that are not normalized to [0,1]."""
|
211 |
+
coords = coords_input.clone()
|
212 |
+
coords[:, :, 0] = coords[:, :, 0] / image_size[1]
|
213 |
+
coords[:, :, 1] = coords[:, :, 1] / image_size[0]
|
214 |
+
return self._pe_encoding(coords.to(torch.float)) # B x N x C
|
SAM/modeling/sam.py
ADDED
@@ -0,0 +1,187 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
2 |
+
# All rights reserved.
|
3 |
+
|
4 |
+
# This source code is licensed under the license found in the
|
5 |
+
# LICENSE file in the root directory of this source tree.
|
6 |
+
|
7 |
+
import torch
|
8 |
+
from torch import nn
|
9 |
+
from torch.nn import functional as F
|
10 |
+
|
11 |
+
from typing import Any, Dict, List, Tuple
|
12 |
+
|
13 |
+
from .mask_decoder import MaskDecoder
|
14 |
+
from .prompt_encoder import PromptEncoder
|
15 |
+
from .image_encoder import ImageEncoderViT
|
16 |
+
|
17 |
+
class Sam(nn.Module):
|
18 |
+
mask_threshold: float = 0.0
|
19 |
+
image_format: str = "RGB"
|
20 |
+
|
21 |
+
def __init__(
|
22 |
+
self,
|
23 |
+
image_encoder: ImageEncoderViT,
|
24 |
+
prompt_encoder: PromptEncoder,
|
25 |
+
mask_decoder: MaskDecoder,
|
26 |
+
pixel_mean: List[float] = [123.675, 116.28, 103.53],
|
27 |
+
pixel_std: List[float] = [58.395, 57.12, 57.375],
|
28 |
+
) -> None:
|
29 |
+
"""
|
30 |
+
SAM predicts object masks from an image and input prompts.
|
31 |
+
|
32 |
+
Arguments:
|
33 |
+
image_encoder (ImageEncoderViT): The backbone used to encode the
|
34 |
+
image into image embeddings that allow for efficient mask prediction.
|
35 |
+
prompt_encoder (PromptEncoder): Encodes various types of input prompts.
|
36 |
+
mask_decoder (MaskDecoder): Predicts masks from the image embeddings
|
37 |
+
and encoded prompts.
|
38 |
+
pixel_mean (list(float)): Mean values for normalizing pixels in the input image.
|
39 |
+
pixel_std (list(float)): Std values for normalizing pixels in the input image.
|
40 |
+
"""
|
41 |
+
super().__init__()
|
42 |
+
self.image_encoder = image_encoder
|
43 |
+
self.prompt_encoder = prompt_encoder
|
44 |
+
self.mask_decoder = mask_decoder
|
45 |
+
self.register_buffer("pixel_mean", torch.Tensor(pixel_mean).view(-1, 1, 1), False)
|
46 |
+
self.register_buffer("pixel_std", torch.Tensor(pixel_std).view(-1, 1, 1), False)
|
47 |
+
|
48 |
+
@property
|
49 |
+
def device(self) -> Any:
|
50 |
+
return self.pixel_mean.device
|
51 |
+
|
52 |
+
@torch.no_grad()
|
53 |
+
def forward(
|
54 |
+
self,
|
55 |
+
batched_input: List[Dict[str, Any]],
|
56 |
+
multimask_output: bool,
|
57 |
+
) -> List[Dict[str, torch.Tensor]]:
|
58 |
+
"""
|
59 |
+
Predicts masks end-to-end from provided images and prompts.
|
60 |
+
If prompts are not known in advance, using SamPredictor is
|
61 |
+
recommended over calling the model directly.
|
62 |
+
|
63 |
+
Arguments:
|
64 |
+
batched_input (list(dict)): A list over input images, each a
|
65 |
+
dictionary with the following keys. A prompt key can be
|
66 |
+
excluded if it is not present.
|
67 |
+
'image': The image as a torch tensor in 3xHxW format,
|
68 |
+
already transformed for input to the model.
|
69 |
+
'original_size': (tuple(int, int)) The original size of
|
70 |
+
the image before transformation, as (H, W).
|
71 |
+
'point_coords': (torch.Tensor) Batched point prompts for
|
72 |
+
this image, with shape BxNx2. Already transformed to the
|
73 |
+
input frame of the model.
|
74 |
+
'point_labels': (torch.Tensor) Batched labels for point prompts,
|
75 |
+
with shape BxN.
|
76 |
+
'boxes': (torch.Tensor) Batched box inputs, with shape Bx4.
|
77 |
+
Already transformed to the input frame of the model.
|
78 |
+
'mask_inputs': (torch.Tensor) Batched mask inputs to the model,
|
79 |
+
in the form Bx1xHxW.
|
80 |
+
multimask_output (bool): Whether the model should predict multiple
|
81 |
+
disambiguating masks, or return a single mask.
|
82 |
+
|
83 |
+
Returns:
|
84 |
+
(list(dict)): A list over input images, where each element is
|
85 |
+
as dictionary with the following keys.
|
86 |
+
'masks': (torch.Tensor) Batched binary mask predictions,
|
87 |
+
with shape BxCxHxW, where B is the number of input prompts,
|
88 |
+
C is determined by multimask_output, and (H, W) is the
|
89 |
+
original size of the image.
|
90 |
+
'iou_predictions': (torch.Tensor) The model's predictions
|
91 |
+
of mask quality, in shape BxC.
|
92 |
+
'low_res_logits': (torch.Tensor) Low resolution logits with
|
93 |
+
shape BxCxHxW, where H=W=256. Can be passed as mask input
|
94 |
+
to subsequent iterations of prediction.
|
95 |
+
"""
|
96 |
+
spase_embed_list = []
|
97 |
+
dense_embed_list = []
|
98 |
+
batch_ind_list = []
|
99 |
+
input_images_list = []
|
100 |
+
for idx, image_record in enumerate(batched_input):
|
101 |
+
input_images_list.append(self.preprocess(image_record["image"]))
|
102 |
+
if "point_coords" in image_record:
|
103 |
+
points = (image_record["point_coords"], image_record["point_labels"])
|
104 |
+
else:
|
105 |
+
points = None
|
106 |
+
sparse_embed, dense_embed = self.prompt_encoder(
|
107 |
+
points=points,
|
108 |
+
boxes=image_record.get("boxes", None),
|
109 |
+
masks=image_record.get("mask_inputs", None),
|
110 |
+
)
|
111 |
+
assert len(sparse_embed) == len(dense_embed)
|
112 |
+
spase_embed_list.append(sparse_embed)
|
113 |
+
dense_embed_list.append(dense_embed)
|
114 |
+
batch_ind_list.append(len(sparse_embed))
|
115 |
+
|
116 |
+
image_embeddings = self.image_encoder(torch.stack(input_images_list, dim=0))
|
117 |
+
sparse_embed = torch.cat(spase_embed_list)
|
118 |
+
dense_embed = torch.cat(dense_embed_list)
|
119 |
+
low_res_masks, iou_predictions = self.mask_decoder(
|
120 |
+
image_embeddings=image_embeddings,
|
121 |
+
image_pe=self.prompt_encoder.get_dense_pe(),
|
122 |
+
sparse_prompt_embeddings=sparse_embed,
|
123 |
+
dense_prompt_embeddings=dense_embed,
|
124 |
+
multimask_output=multimask_output,
|
125 |
+
batch_ind_list=batch_ind_list,
|
126 |
+
)
|
127 |
+
low_res_masks = torch.split(low_res_masks, batch_ind_list, dim=0)
|
128 |
+
iou_predictions = torch.split(iou_predictions, batch_ind_list, dim=0)
|
129 |
+
outputs = []
|
130 |
+
for image_record, low_res_mask, iou_prediction in zip(batched_input, low_res_masks, iou_predictions):
|
131 |
+
masks = self.postprocess_masks(
|
132 |
+
low_res_mask,
|
133 |
+
input_size=image_record["image"].shape[-2:],
|
134 |
+
original_size=image_record["original_size"],
|
135 |
+
)
|
136 |
+
masks = masks > self.mask_threshold
|
137 |
+
outputs.append(
|
138 |
+
{
|
139 |
+
"masks": masks,
|
140 |
+
"iou_predictions": iou_prediction,
|
141 |
+
"low_res_logits": low_res_mask,
|
142 |
+
}
|
143 |
+
)
|
144 |
+
return outputs
|
145 |
+
|
146 |
+
def postprocess_masks(
|
147 |
+
self,
|
148 |
+
masks: torch.Tensor,
|
149 |
+
input_size: Tuple[int, ...],
|
150 |
+
original_size: Tuple[int, ...],
|
151 |
+
) -> torch.Tensor:
|
152 |
+
"""
|
153 |
+
Remove padding and upscale masks to the original image size.
|
154 |
+
|
155 |
+
Arguments:
|
156 |
+
masks (torch.Tensor): Batched masks from the mask_decoder,
|
157 |
+
in BxCxHxW format.
|
158 |
+
input_size (tuple(int, int)): The size of the image input to the
|
159 |
+
model, in (H, W) format. Used to remove padding.
|
160 |
+
original_size (tuple(int, int)): The original size of the image
|
161 |
+
before resizing for input to the model, in (H, W) format.
|
162 |
+
|
163 |
+
Returns:
|
164 |
+
(torch.Tensor): Batched masks in BxCxHxW format, where (H, W)
|
165 |
+
is given by original_size.
|
166 |
+
"""
|
167 |
+
masks = F.interpolate(
|
168 |
+
masks,
|
169 |
+
(self.image_encoder.img_size, self.image_encoder.img_size),
|
170 |
+
mode="bilinear",
|
171 |
+
align_corners=False,
|
172 |
+
)
|
173 |
+
masks = masks[..., : input_size[0], : input_size[1]]
|
174 |
+
masks = F.interpolate(masks, original_size, mode="bilinear", align_corners=False)
|
175 |
+
return masks
|
176 |
+
|
177 |
+
def preprocess(self, x: torch.Tensor) -> torch.Tensor:
|
178 |
+
"""Normalize pixel values and pad to a square input."""
|
179 |
+
# Normalize colors
|
180 |
+
x = (x - self.pixel_mean) / self.pixel_std
|
181 |
+
|
182 |
+
# Pad
|
183 |
+
h, w = x.shape[-2:]
|
184 |
+
padh = self.image_encoder.img_size - h
|
185 |
+
padw = self.image_encoder.img_size - w
|
186 |
+
x = F.pad(x, (0, padw, 0, padh))
|
187 |
+
return x
|
SAM/modeling/transformer.py
ADDED
@@ -0,0 +1,240 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
2 |
+
# All rights reserved.
|
3 |
+
|
4 |
+
# This source code is licensed under the license found in the
|
5 |
+
# LICENSE file in the root directory of this source tree.
|
6 |
+
|
7 |
+
import torch
|
8 |
+
from torch import Tensor, nn
|
9 |
+
|
10 |
+
import math
|
11 |
+
from typing import Tuple, Type
|
12 |
+
|
13 |
+
from .common import MLPBlock
|
14 |
+
|
15 |
+
|
16 |
+
class TwoWayTransformer(nn.Module):
|
17 |
+
def __init__(
|
18 |
+
self,
|
19 |
+
depth: int,
|
20 |
+
embedding_dim: int,
|
21 |
+
num_heads: int,
|
22 |
+
mlp_dim: int,
|
23 |
+
activation: Type[nn.Module] = nn.ReLU,
|
24 |
+
attention_downsample_rate: int = 2,
|
25 |
+
) -> None:
|
26 |
+
"""
|
27 |
+
A transformer decoder that attends to an input image using
|
28 |
+
queries whose positional embedding is supplied.
|
29 |
+
|
30 |
+
Args:
|
31 |
+
depth (int): number of layers in the transformer
|
32 |
+
embedding_dim (int): the channel dimension for the input embeddings
|
33 |
+
num_heads (int): the number of heads for multihead attention. Must
|
34 |
+
divide embedding_dim
|
35 |
+
mlp_dim (int): the channel dimension internal to the MLP block
|
36 |
+
activation (nn.Module): the activation to use in the MLP block
|
37 |
+
"""
|
38 |
+
super().__init__()
|
39 |
+
self.depth = depth
|
40 |
+
self.embedding_dim = embedding_dim
|
41 |
+
self.num_heads = num_heads
|
42 |
+
self.mlp_dim = mlp_dim
|
43 |
+
self.layers = nn.ModuleList()
|
44 |
+
|
45 |
+
for i in range(depth):
|
46 |
+
self.layers.append(
|
47 |
+
TwoWayAttentionBlock(
|
48 |
+
embedding_dim=embedding_dim,
|
49 |
+
num_heads=num_heads,
|
50 |
+
mlp_dim=mlp_dim,
|
51 |
+
activation=activation,
|
52 |
+
attention_downsample_rate=attention_downsample_rate,
|
53 |
+
skip_first_layer_pe=(i == 0),
|
54 |
+
)
|
55 |
+
)
|
56 |
+
|
57 |
+
self.final_attn_token_to_image = Attention(
|
58 |
+
embedding_dim, num_heads, downsample_rate=attention_downsample_rate
|
59 |
+
)
|
60 |
+
self.norm_final_attn = nn.LayerNorm(embedding_dim)
|
61 |
+
|
62 |
+
def forward(
|
63 |
+
self,
|
64 |
+
image_embedding: Tensor,
|
65 |
+
image_pe: Tensor,
|
66 |
+
point_embedding: Tensor,
|
67 |
+
) -> Tuple[Tensor, Tensor]:
|
68 |
+
"""
|
69 |
+
Args:
|
70 |
+
image_embedding (torch.Tensor): image to attend to. Should be shape
|
71 |
+
B x embedding_dim x h x w for any h and w.
|
72 |
+
image_pe (torch.Tensor): the positional encoding to add to the image. Must
|
73 |
+
have the same shape as image_embedding.
|
74 |
+
point_embedding (torch.Tensor): the embedding to add to the query points.
|
75 |
+
Must have shape B x N_points x embedding_dim for any N_points.
|
76 |
+
|
77 |
+
Returns:
|
78 |
+
torch.Tensor: the processed point_embedding
|
79 |
+
torch.Tensor: the processed image_embedding
|
80 |
+
"""
|
81 |
+
# BxCxHxW -> BxHWxC == B x N_image_tokens x C
|
82 |
+
bs, c, h, w = image_embedding.shape
|
83 |
+
image_embedding = image_embedding.flatten(2).permute(0, 2, 1)
|
84 |
+
image_pe = image_pe.flatten(2).permute(0, 2, 1)
|
85 |
+
|
86 |
+
# Prepare queries
|
87 |
+
queries = point_embedding
|
88 |
+
keys = image_embedding
|
89 |
+
|
90 |
+
# Apply transformer blocks and final layernorm
|
91 |
+
for layer in self.layers:
|
92 |
+
queries, keys = layer(
|
93 |
+
queries=queries,
|
94 |
+
keys=keys,
|
95 |
+
query_pe=point_embedding,
|
96 |
+
key_pe=image_pe,
|
97 |
+
)
|
98 |
+
|
99 |
+
# Apply the final attention layer from the points to the image
|
100 |
+
q = queries + point_embedding
|
101 |
+
k = keys + image_pe
|
102 |
+
attn_out = self.final_attn_token_to_image(q=q, k=k, v=keys)
|
103 |
+
queries = queries + attn_out
|
104 |
+
queries = self.norm_final_attn(queries)
|
105 |
+
|
106 |
+
return queries, keys
|
107 |
+
|
108 |
+
|
109 |
+
class TwoWayAttentionBlock(nn.Module):
|
110 |
+
def __init__(
|
111 |
+
self,
|
112 |
+
embedding_dim: int,
|
113 |
+
num_heads: int,
|
114 |
+
mlp_dim: int = 2048,
|
115 |
+
activation: Type[nn.Module] = nn.ReLU,
|
116 |
+
attention_downsample_rate: int = 2,
|
117 |
+
skip_first_layer_pe: bool = False,
|
118 |
+
) -> None:
|
119 |
+
"""
|
120 |
+
A transformer block with four layers: (1) self-attention of sparse
|
121 |
+
inputs, (2) cross attention of sparse inputs to dense inputs, (3) mlp
|
122 |
+
block on sparse inputs, and (4) cross attention of dense inputs to sparse
|
123 |
+
inputs.
|
124 |
+
|
125 |
+
Arguments:
|
126 |
+
embedding_dim (int): the channel dimension of the embeddings
|
127 |
+
num_heads (int): the number of heads in the attention layers
|
128 |
+
mlp_dim (int): the hidden dimension of the mlp block
|
129 |
+
activation (nn.Module): the activation of the mlp block
|
130 |
+
skip_first_layer_pe (bool): skip the PE on the first layer
|
131 |
+
"""
|
132 |
+
super().__init__()
|
133 |
+
self.self_attn = Attention(embedding_dim, num_heads)
|
134 |
+
self.norm1 = nn.LayerNorm(embedding_dim)
|
135 |
+
|
136 |
+
self.cross_attn_token_to_image = Attention(
|
137 |
+
embedding_dim, num_heads, downsample_rate=attention_downsample_rate
|
138 |
+
)
|
139 |
+
self.norm2 = nn.LayerNorm(embedding_dim)
|
140 |
+
|
141 |
+
self.mlp = MLPBlock(embedding_dim, mlp_dim, activation)
|
142 |
+
self.norm3 = nn.LayerNorm(embedding_dim)
|
143 |
+
|
144 |
+
self.norm4 = nn.LayerNorm(embedding_dim)
|
145 |
+
self.cross_attn_image_to_token = Attention(
|
146 |
+
embedding_dim, num_heads, downsample_rate=attention_downsample_rate
|
147 |
+
)
|
148 |
+
|
149 |
+
self.skip_first_layer_pe = skip_first_layer_pe
|
150 |
+
|
151 |
+
def forward(
|
152 |
+
self, queries: Tensor, keys: Tensor, query_pe: Tensor, key_pe: Tensor
|
153 |
+
) -> Tuple[Tensor, Tensor]:
|
154 |
+
# Self attention block
|
155 |
+
if self.skip_first_layer_pe:
|
156 |
+
queries = self.self_attn(q=queries, k=queries, v=queries)
|
157 |
+
else:
|
158 |
+
q = queries + query_pe
|
159 |
+
attn_out = self.self_attn(q=q, k=q, v=queries)
|
160 |
+
queries = queries + attn_out
|
161 |
+
queries = self.norm1(queries)
|
162 |
+
|
163 |
+
# Cross attention block, tokens attending to image embedding
|
164 |
+
q = queries + query_pe
|
165 |
+
k = keys + key_pe
|
166 |
+
attn_out = self.cross_attn_token_to_image(q=q, k=k, v=keys)
|
167 |
+
queries = queries + attn_out
|
168 |
+
queries = self.norm2(queries)
|
169 |
+
|
170 |
+
# MLP block
|
171 |
+
mlp_out = self.mlp(queries)
|
172 |
+
queries = queries + mlp_out
|
173 |
+
queries = self.norm3(queries)
|
174 |
+
|
175 |
+
# Cross attention block, image embedding attending to tokens
|
176 |
+
q = queries + query_pe
|
177 |
+
k = keys + key_pe
|
178 |
+
attn_out = self.cross_attn_image_to_token(q=k, k=q, v=queries)
|
179 |
+
keys = keys + attn_out
|
180 |
+
keys = self.norm4(keys)
|
181 |
+
|
182 |
+
return queries, keys
|
183 |
+
|
184 |
+
|
185 |
+
class Attention(nn.Module):
|
186 |
+
"""
|
187 |
+
An attention layer that allows for downscaling the size of the embedding
|
188 |
+
after projection to queries, keys, and values.
|
189 |
+
"""
|
190 |
+
|
191 |
+
def __init__(
|
192 |
+
self,
|
193 |
+
embedding_dim: int,
|
194 |
+
num_heads: int,
|
195 |
+
downsample_rate: int = 1,
|
196 |
+
) -> None:
|
197 |
+
super().__init__()
|
198 |
+
self.embedding_dim = embedding_dim
|
199 |
+
self.internal_dim = embedding_dim // downsample_rate
|
200 |
+
self.num_heads = num_heads
|
201 |
+
assert self.internal_dim % num_heads == 0, "num_heads must divide embedding_dim."
|
202 |
+
|
203 |
+
self.q_proj = nn.Linear(embedding_dim, self.internal_dim)
|
204 |
+
self.k_proj = nn.Linear(embedding_dim, self.internal_dim)
|
205 |
+
self.v_proj = nn.Linear(embedding_dim, self.internal_dim)
|
206 |
+
self.out_proj = nn.Linear(self.internal_dim, embedding_dim)
|
207 |
+
|
208 |
+
def _separate_heads(self, x: Tensor, num_heads: int) -> Tensor:
|
209 |
+
b, n, c = x.shape
|
210 |
+
x = x.reshape(b, n, num_heads, c // num_heads)
|
211 |
+
return x.transpose(1, 2) # B x N_heads x N_tokens x C_per_head
|
212 |
+
|
213 |
+
def _recombine_heads(self, x: Tensor) -> Tensor:
|
214 |
+
b, n_heads, n_tokens, c_per_head = x.shape
|
215 |
+
x = x.transpose(1, 2)
|
216 |
+
return x.reshape(b, n_tokens, n_heads * c_per_head) # B x N_tokens x C
|
217 |
+
|
218 |
+
def forward(self, q: Tensor, k: Tensor, v: Tensor) -> Tensor:
|
219 |
+
# Input projections
|
220 |
+
q = self.q_proj(q)
|
221 |
+
k = self.k_proj(k)
|
222 |
+
v = self.v_proj(v)
|
223 |
+
|
224 |
+
# Separate into heads
|
225 |
+
q = self._separate_heads(q, self.num_heads)
|
226 |
+
k = self._separate_heads(k, self.num_heads)
|
227 |
+
v = self._separate_heads(v, self.num_heads)
|
228 |
+
|
229 |
+
# Attention
|
230 |
+
_, _, _, c_per_head = q.shape
|
231 |
+
attn = q @ k.permute(0, 1, 3, 2) # B x N_heads x N_tokens x N_tokens
|
232 |
+
attn = attn / math.sqrt(c_per_head)
|
233 |
+
attn = torch.softmax(attn, dim=-1)
|
234 |
+
|
235 |
+
# Get output
|
236 |
+
out = attn @ v
|
237 |
+
out = self._recombine_heads(out)
|
238 |
+
out = self.out_proj(out)
|
239 |
+
|
240 |
+
return out
|
SAM/predictor.py
ADDED
@@ -0,0 +1,269 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
2 |
+
# All rights reserved.
|
3 |
+
|
4 |
+
# This source code is licensed under the license found in the
|
5 |
+
# LICENSE file in the root directory of this source tree.
|
6 |
+
|
7 |
+
import numpy as np
|
8 |
+
import torch
|
9 |
+
|
10 |
+
from .modeling import Sam
|
11 |
+
|
12 |
+
from typing import Optional, Tuple
|
13 |
+
|
14 |
+
from .utils.transforms import ResizeLongestSide
|
15 |
+
|
16 |
+
|
17 |
+
class SamPredictor:
|
18 |
+
def __init__(
|
19 |
+
self,
|
20 |
+
sam_model: Sam,
|
21 |
+
) -> None:
|
22 |
+
"""
|
23 |
+
Uses SAM to calculate the image embedding for an image, and then
|
24 |
+
allow repeated, efficient mask prediction given prompts.
|
25 |
+
|
26 |
+
Arguments:
|
27 |
+
sam_model (Sam): The model to use for mask prediction.
|
28 |
+
"""
|
29 |
+
super().__init__()
|
30 |
+
self.model = sam_model
|
31 |
+
self.transform = ResizeLongestSide(sam_model.image_encoder.img_size)
|
32 |
+
self.reset_image()
|
33 |
+
|
34 |
+
def set_image(
|
35 |
+
self,
|
36 |
+
image: np.ndarray,
|
37 |
+
image_format: str = "RGB",
|
38 |
+
) -> None:
|
39 |
+
"""
|
40 |
+
Calculates the image embeddings for the provided image, allowing
|
41 |
+
masks to be predicted with the 'predict' method.
|
42 |
+
|
43 |
+
Arguments:
|
44 |
+
image (np.ndarray): The image for calculating masks. Expects an
|
45 |
+
image in HWC uint8 format, with pixel values in [0, 255].
|
46 |
+
image_format (str): The color format of the image, in ['RGB', 'BGR'].
|
47 |
+
"""
|
48 |
+
assert image_format in [
|
49 |
+
"RGB",
|
50 |
+
"BGR",
|
51 |
+
], f"image_format must be in ['RGB', 'BGR'], is {image_format}."
|
52 |
+
if image_format != self.model.image_format:
|
53 |
+
image = image[..., ::-1]
|
54 |
+
|
55 |
+
# Transform the image to the form expected by the model
|
56 |
+
input_image = self.transform.apply_image(image)
|
57 |
+
input_image_torch = torch.as_tensor(input_image, device=self.device)
|
58 |
+
input_image_torch = input_image_torch.permute(2, 0, 1).contiguous()[None, :, :, :]
|
59 |
+
|
60 |
+
self.set_torch_image(input_image_torch, image.shape[:2])
|
61 |
+
|
62 |
+
@torch.no_grad()
|
63 |
+
def set_torch_image(
|
64 |
+
self,
|
65 |
+
transformed_image: torch.Tensor,
|
66 |
+
original_image_size: Tuple[int, ...],
|
67 |
+
) -> None:
|
68 |
+
"""
|
69 |
+
Calculates the image embeddings for the provided image, allowing
|
70 |
+
masks to be predicted with the 'predict' method. Expects the input
|
71 |
+
image to be already transformed to the format expected by the model.
|
72 |
+
|
73 |
+
Arguments:
|
74 |
+
transformed_image (torch.Tensor): The input image, with shape
|
75 |
+
1x3xHxW, which has been transformed with ResizeLongestSide.
|
76 |
+
original_image_size (tuple(int, int)): The size of the image
|
77 |
+
before transformation, in (H, W) format.
|
78 |
+
"""
|
79 |
+
assert (
|
80 |
+
len(transformed_image.shape) == 4
|
81 |
+
and transformed_image.shape[1] == 3
|
82 |
+
and max(*transformed_image.shape[2:]) == self.model.image_encoder.img_size
|
83 |
+
), f"set_torch_image input must be BCHW with long side {self.model.image_encoder.img_size}."
|
84 |
+
self.reset_image()
|
85 |
+
|
86 |
+
self.original_size = original_image_size
|
87 |
+
self.input_size = tuple(transformed_image.shape[-2:])
|
88 |
+
input_image = self.model.preprocess(transformed_image)
|
89 |
+
self.features = self.model.image_encoder(input_image)
|
90 |
+
self.is_image_set = True
|
91 |
+
|
92 |
+
def predict(
|
93 |
+
self,
|
94 |
+
point_coords: Optional[np.ndarray] = None,
|
95 |
+
point_labels: Optional[np.ndarray] = None,
|
96 |
+
box: Optional[np.ndarray] = None,
|
97 |
+
mask_input: Optional[np.ndarray] = None,
|
98 |
+
multimask_output: bool = True,
|
99 |
+
return_logits: bool = False,
|
100 |
+
) -> Tuple[np.ndarray, np.ndarray, np.ndarray]:
|
101 |
+
"""
|
102 |
+
Predict masks for the given input prompts, using the currently set image.
|
103 |
+
|
104 |
+
Arguments:
|
105 |
+
point_coords (np.ndarray or None): A Nx2 array of point prompts to the
|
106 |
+
model. Each point is in (X,Y) in pixels.
|
107 |
+
point_labels (np.ndarray or None): A length N array of labels for the
|
108 |
+
point prompts. 1 indicates a foreground point and 0 indicates a
|
109 |
+
background point.
|
110 |
+
box (np.ndarray or None): A length 4 array given a box prompt to the
|
111 |
+
model, in XYXY format.
|
112 |
+
mask_input (np.ndarray): A low resolution mask input to the model, typically
|
113 |
+
coming from a previous prediction iteration. Has form 1xHxW, where
|
114 |
+
for SAM, H=W=256.
|
115 |
+
multimask_output (bool): If true, the model will return three masks.
|
116 |
+
For ambiguous input prompts (such as a single click), this will often
|
117 |
+
produce better masks than a single prediction. If only a single
|
118 |
+
mask is needed, the model's predicted quality score can be used
|
119 |
+
to select the best mask. For non-ambiguous prompts, such as multiple
|
120 |
+
input prompts, multimask_output=False can give better results.
|
121 |
+
return_logits (bool): If true, returns un-thresholded masks logits
|
122 |
+
instead of a binary mask.
|
123 |
+
|
124 |
+
Returns:
|
125 |
+
(np.ndarray): The output masks in CxHxW format, where C is the
|
126 |
+
number of masks, and (H, W) is the original image size.
|
127 |
+
(np.ndarray): An array of length C containing the model's
|
128 |
+
predictions for the quality of each mask.
|
129 |
+
(np.ndarray): An array of shape CxHxW, where C is the number
|
130 |
+
of masks and H=W=256. These low resolution logits can be passed to
|
131 |
+
a subsequent iteration as mask input.
|
132 |
+
"""
|
133 |
+
if not self.is_image_set:
|
134 |
+
raise RuntimeError("An image must be set with .set_image(...) before mask prediction.")
|
135 |
+
|
136 |
+
# Transform input prompts
|
137 |
+
coords_torch, labels_torch, box_torch, mask_input_torch = None, None, None, None
|
138 |
+
if point_coords is not None:
|
139 |
+
assert (
|
140 |
+
point_labels is not None
|
141 |
+
), "point_labels must be supplied if point_coords is supplied."
|
142 |
+
point_coords = self.transform.apply_coords(point_coords, self.original_size)
|
143 |
+
coords_torch = torch.as_tensor(point_coords, dtype=torch.float, device=self.device)
|
144 |
+
labels_torch = torch.as_tensor(point_labels, dtype=torch.int, device=self.device)
|
145 |
+
coords_torch, labels_torch = coords_torch[None, :, :], labels_torch[None, :]
|
146 |
+
if box is not None:
|
147 |
+
box = self.transform.apply_boxes(box, self.original_size)
|
148 |
+
box_torch = torch.as_tensor(box, dtype=torch.float, device=self.device)
|
149 |
+
box_torch = box_torch[None, :]
|
150 |
+
if mask_input is not None:
|
151 |
+
mask_input_torch = torch.as_tensor(mask_input, dtype=torch.float, device=self.device)
|
152 |
+
mask_input_torch = mask_input_torch[None, :, :, :]
|
153 |
+
|
154 |
+
masks, iou_predictions, low_res_masks = self.predict_torch(
|
155 |
+
coords_torch,
|
156 |
+
labels_torch,
|
157 |
+
box_torch,
|
158 |
+
mask_input_torch,
|
159 |
+
multimask_output,
|
160 |
+
return_logits=return_logits,
|
161 |
+
)
|
162 |
+
|
163 |
+
masks_np = masks[0].detach().cpu().numpy()
|
164 |
+
iou_predictions_np = iou_predictions[0].detach().cpu().numpy()
|
165 |
+
low_res_masks_np = low_res_masks[0].detach().cpu().numpy()
|
166 |
+
return masks_np, iou_predictions_np, low_res_masks_np
|
167 |
+
|
168 |
+
@torch.no_grad()
|
169 |
+
def predict_torch(
|
170 |
+
self,
|
171 |
+
point_coords: Optional[torch.Tensor],
|
172 |
+
point_labels: Optional[torch.Tensor],
|
173 |
+
boxes: Optional[torch.Tensor] = None,
|
174 |
+
mask_input: Optional[torch.Tensor] = None,
|
175 |
+
multimask_output: bool = True,
|
176 |
+
return_logits: bool = False,
|
177 |
+
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
|
178 |
+
"""
|
179 |
+
Predict masks for the given input prompts, using the currently set image.
|
180 |
+
Input prompts are batched torch tensors and are expected to already be
|
181 |
+
transformed to the input frame using ResizeLongestSide.
|
182 |
+
|
183 |
+
Arguments:
|
184 |
+
point_coords (torch.Tensor or None): A BxNx2 array of point prompts to the
|
185 |
+
model. Each point is in (X,Y) in pixels.
|
186 |
+
point_labels (torch.Tensor or None): A BxN array of labels for the
|
187 |
+
point prompts. 1 indicates a foreground point and 0 indicates a
|
188 |
+
background point.
|
189 |
+
boxes (np.ndarray or None): A Bx4 array given a box prompt to the
|
190 |
+
model, in XYXY format.
|
191 |
+
mask_input (np.ndarray): A low resolution mask input to the model, typically
|
192 |
+
coming from a previous prediction iteration. Has form Bx1xHxW, where
|
193 |
+
for SAM, H=W=256. Masks returned by a previous iteration of the
|
194 |
+
predict method do not need further transformation.
|
195 |
+
multimask_output (bool): If true, the model will return three masks.
|
196 |
+
For ambiguous input prompts (such as a single click), this will often
|
197 |
+
produce better masks than a single prediction. If only a single
|
198 |
+
mask is needed, the model's predicted quality score can be used
|
199 |
+
to select the best mask. For non-ambiguous prompts, such as multiple
|
200 |
+
input prompts, multimask_output=False can give better results.
|
201 |
+
return_logits (bool): If true, returns un-thresholded masks logits
|
202 |
+
instead of a binary mask.
|
203 |
+
|
204 |
+
Returns:
|
205 |
+
(torch.Tensor): The output masks in BxCxHxW format, where C is the
|
206 |
+
number of masks, and (H, W) is the original image size.
|
207 |
+
(torch.Tensor): An array of shape BxC containing the model's
|
208 |
+
predictions for the quality of each mask.
|
209 |
+
(torch.Tensor): An array of shape BxCxHxW, where C is the number
|
210 |
+
of masks and H=W=256. These low res logits can be passed to
|
211 |
+
a subsequent iteration as mask input.
|
212 |
+
"""
|
213 |
+
if not self.is_image_set:
|
214 |
+
raise RuntimeError("An image must be set with .set_image(...) before mask prediction.")
|
215 |
+
|
216 |
+
if point_coords is not None:
|
217 |
+
points = (point_coords, point_labels)
|
218 |
+
else:
|
219 |
+
points = None
|
220 |
+
|
221 |
+
# Embed prompts
|
222 |
+
sparse_embeddings, dense_embeddings = self.model.prompt_encoder(
|
223 |
+
points=points,
|
224 |
+
boxes=boxes,
|
225 |
+
masks=mask_input,
|
226 |
+
)
|
227 |
+
|
228 |
+
# Predict masks
|
229 |
+
low_res_masks, iou_predictions = self.model.mask_decoder(
|
230 |
+
image_embeddings=self.features,
|
231 |
+
image_pe=self.model.prompt_encoder.get_dense_pe(),
|
232 |
+
sparse_prompt_embeddings=sparse_embeddings,
|
233 |
+
dense_prompt_embeddings=dense_embeddings,
|
234 |
+
multimask_output=multimask_output,
|
235 |
+
)
|
236 |
+
|
237 |
+
# Upscale the masks to the original image resolution
|
238 |
+
masks = self.model.postprocess_masks(low_res_masks, self.input_size, self.original_size)
|
239 |
+
|
240 |
+
if not return_logits:
|
241 |
+
masks = masks > self.model.mask_threshold
|
242 |
+
|
243 |
+
return masks, iou_predictions, low_res_masks
|
244 |
+
|
245 |
+
def get_image_embedding(self) -> torch.Tensor:
|
246 |
+
"""
|
247 |
+
Returns the image embeddings for the currently set image, with
|
248 |
+
shape 1xCxHxW, where C is the embedding dimension and (H,W) are
|
249 |
+
the embedding spatial dimension of SAM (typically C=256, H=W=64).
|
250 |
+
"""
|
251 |
+
if not self.is_image_set:
|
252 |
+
raise RuntimeError(
|
253 |
+
"An image must be set with .set_image(...) to generate an embedding."
|
254 |
+
)
|
255 |
+
assert self.features is not None, "Features must exist if an image has been set."
|
256 |
+
return self.features
|
257 |
+
|
258 |
+
@property
|
259 |
+
def device(self) -> torch.device:
|
260 |
+
return self.model.device
|
261 |
+
|
262 |
+
def reset_image(self) -> None:
|
263 |
+
"""Resets the currently set image."""
|
264 |
+
self.is_image_set = False
|
265 |
+
self.features = None
|
266 |
+
self.orig_h = None
|
267 |
+
self.orig_w = None
|
268 |
+
self.input_h = None
|
269 |
+
self.input_w = None
|
SAM/utils/__pycache__/amg.cpython-310.pyc
ADDED
Binary file (12.1 kB). View file
|
|
SAM/utils/__pycache__/transforms.cpython-310.pyc
ADDED
Binary file (3.93 kB). View file
|
|
SAM/utils/amg.py
ADDED
@@ -0,0 +1,346 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
2 |
+
# All rights reserved.
|
3 |
+
|
4 |
+
# This source code is licensed under the license found in the
|
5 |
+
# LICENSE file in the root directory of this source tree.
|
6 |
+
|
7 |
+
import numpy as np
|
8 |
+
import torch
|
9 |
+
|
10 |
+
import math
|
11 |
+
from copy import deepcopy
|
12 |
+
from itertools import product
|
13 |
+
from typing import Any, Dict, Generator, ItemsView, List, Tuple
|
14 |
+
|
15 |
+
|
16 |
+
class MaskData:
|
17 |
+
"""
|
18 |
+
A structure for storing masks and their related data in batched format.
|
19 |
+
Implements basic filtering and concatenation.
|
20 |
+
"""
|
21 |
+
|
22 |
+
def __init__(self, **kwargs) -> None:
|
23 |
+
for v in kwargs.values():
|
24 |
+
assert isinstance(
|
25 |
+
v, (list, np.ndarray, torch.Tensor)
|
26 |
+
), "MaskData only supports list, numpy arrays, and torch tensors."
|
27 |
+
self._stats = dict(**kwargs)
|
28 |
+
|
29 |
+
def __setitem__(self, key: str, item: Any) -> None:
|
30 |
+
assert isinstance(
|
31 |
+
item, (list, np.ndarray, torch.Tensor)
|
32 |
+
), "MaskData only supports list, numpy arrays, and torch tensors."
|
33 |
+
self._stats[key] = item
|
34 |
+
|
35 |
+
def __delitem__(self, key: str) -> None:
|
36 |
+
del self._stats[key]
|
37 |
+
|
38 |
+
def __getitem__(self, key: str) -> Any:
|
39 |
+
return self._stats[key]
|
40 |
+
|
41 |
+
def items(self) -> ItemsView[str, Any]:
|
42 |
+
return self._stats.items()
|
43 |
+
|
44 |
+
def filter(self, keep: torch.Tensor) -> None:
|
45 |
+
for k, v in self._stats.items():
|
46 |
+
if v is None:
|
47 |
+
self._stats[k] = None
|
48 |
+
elif isinstance(v, torch.Tensor):
|
49 |
+
self._stats[k] = v[torch.as_tensor(keep, device=v.device)]
|
50 |
+
elif isinstance(v, np.ndarray):
|
51 |
+
self._stats[k] = v[keep.detach().cpu().numpy()]
|
52 |
+
elif isinstance(v, list) and keep.dtype == torch.bool:
|
53 |
+
self._stats[k] = [a for i, a in enumerate(v) if keep[i]]
|
54 |
+
elif isinstance(v, list):
|
55 |
+
self._stats[k] = [v[i] for i in keep]
|
56 |
+
else:
|
57 |
+
raise TypeError(f"MaskData key {k} has an unsupported type {type(v)}.")
|
58 |
+
|
59 |
+
def cat(self, new_stats: "MaskData") -> None:
|
60 |
+
for k, v in new_stats.items():
|
61 |
+
if k not in self._stats or self._stats[k] is None:
|
62 |
+
self._stats[k] = deepcopy(v)
|
63 |
+
elif isinstance(v, torch.Tensor):
|
64 |
+
self._stats[k] = torch.cat([self._stats[k], v], dim=0)
|
65 |
+
elif isinstance(v, np.ndarray):
|
66 |
+
self._stats[k] = np.concatenate([self._stats[k], v], axis=0)
|
67 |
+
elif isinstance(v, list):
|
68 |
+
self._stats[k] = self._stats[k] + deepcopy(v)
|
69 |
+
else:
|
70 |
+
raise TypeError(f"MaskData key {k} has an unsupported type {type(v)}.")
|
71 |
+
|
72 |
+
def to_numpy(self) -> None:
|
73 |
+
for k, v in self._stats.items():
|
74 |
+
if isinstance(v, torch.Tensor):
|
75 |
+
self._stats[k] = v.detach().cpu().numpy()
|
76 |
+
|
77 |
+
|
78 |
+
def is_box_near_crop_edge(
|
79 |
+
boxes: torch.Tensor, crop_box: List[int], orig_box: List[int], atol: float = 20.0
|
80 |
+
) -> torch.Tensor:
|
81 |
+
"""Filter masks at the edge of a crop, but not at the edge of the original image."""
|
82 |
+
crop_box_torch = torch.as_tensor(crop_box, dtype=torch.float, device=boxes.device)
|
83 |
+
orig_box_torch = torch.as_tensor(orig_box, dtype=torch.float, device=boxes.device)
|
84 |
+
boxes = uncrop_boxes_xyxy(boxes, crop_box).float()
|
85 |
+
near_crop_edge = torch.isclose(boxes, crop_box_torch[None, :], atol=atol, rtol=0)
|
86 |
+
near_image_edge = torch.isclose(boxes, orig_box_torch[None, :], atol=atol, rtol=0)
|
87 |
+
near_crop_edge = torch.logical_and(near_crop_edge, ~near_image_edge)
|
88 |
+
return torch.any(near_crop_edge, dim=1)
|
89 |
+
|
90 |
+
|
91 |
+
def box_xyxy_to_xywh(box_xyxy: torch.Tensor) -> torch.Tensor:
|
92 |
+
box_xywh = deepcopy(box_xyxy)
|
93 |
+
box_xywh[2] = box_xywh[2] - box_xywh[0]
|
94 |
+
box_xywh[3] = box_xywh[3] - box_xywh[1]
|
95 |
+
return box_xywh
|
96 |
+
|
97 |
+
|
98 |
+
def batch_iterator(batch_size: int, *args) -> Generator[List[Any], None, None]:
|
99 |
+
assert len(args) > 0 and all(
|
100 |
+
len(a) == len(args[0]) for a in args
|
101 |
+
), "Batched iteration must have inputs of all the same size."
|
102 |
+
n_batches = len(args[0]) // batch_size + int(len(args[0]) % batch_size != 0)
|
103 |
+
for b in range(n_batches):
|
104 |
+
yield [arg[b * batch_size : (b + 1) * batch_size] for arg in args]
|
105 |
+
|
106 |
+
|
107 |
+
def mask_to_rle_pytorch(tensor: torch.Tensor) -> List[Dict[str, Any]]:
|
108 |
+
"""
|
109 |
+
Encodes masks to an uncompressed RLE, in the format expected by
|
110 |
+
pycoco tools.
|
111 |
+
"""
|
112 |
+
# Put in fortran order and flatten h,w
|
113 |
+
b, h, w = tensor.shape
|
114 |
+
tensor = tensor.permute(0, 2, 1).flatten(1)
|
115 |
+
|
116 |
+
# Compute change indices
|
117 |
+
diff = tensor[:, 1:] ^ tensor[:, :-1]
|
118 |
+
change_indices = diff.nonzero()
|
119 |
+
|
120 |
+
# Encode run length
|
121 |
+
out = []
|
122 |
+
for i in range(b):
|
123 |
+
cur_idxs = change_indices[change_indices[:, 0] == i, 1]
|
124 |
+
cur_idxs = torch.cat(
|
125 |
+
[
|
126 |
+
torch.tensor([0], dtype=cur_idxs.dtype, device=cur_idxs.device),
|
127 |
+
cur_idxs + 1,
|
128 |
+
torch.tensor([h * w], dtype=cur_idxs.dtype, device=cur_idxs.device),
|
129 |
+
]
|
130 |
+
)
|
131 |
+
btw_idxs = cur_idxs[1:] - cur_idxs[:-1]
|
132 |
+
counts = [] if tensor[i, 0] == 0 else [0]
|
133 |
+
counts.extend(btw_idxs.detach().cpu().tolist())
|
134 |
+
out.append({"size": [h, w], "counts": counts})
|
135 |
+
return out
|
136 |
+
|
137 |
+
|
138 |
+
def rle_to_mask(rle: Dict[str, Any]) -> np.ndarray:
|
139 |
+
"""Compute a binary mask from an uncompressed RLE."""
|
140 |
+
h, w = rle["size"]
|
141 |
+
mask = np.empty(h * w, dtype=bool)
|
142 |
+
idx = 0
|
143 |
+
parity = False
|
144 |
+
for count in rle["counts"]:
|
145 |
+
mask[idx : idx + count] = parity
|
146 |
+
idx += count
|
147 |
+
parity ^= True
|
148 |
+
mask = mask.reshape(w, h)
|
149 |
+
return mask.transpose() # Put in C order
|
150 |
+
|
151 |
+
|
152 |
+
def area_from_rle(rle: Dict[str, Any]) -> int:
|
153 |
+
return sum(rle["counts"][1::2])
|
154 |
+
|
155 |
+
|
156 |
+
def calculate_stability_score(
|
157 |
+
masks: torch.Tensor, mask_threshold: float, threshold_offset: float
|
158 |
+
) -> torch.Tensor:
|
159 |
+
"""
|
160 |
+
Computes the stability score for a batch of masks. The stability
|
161 |
+
score is the IoU between the binary masks obtained by thresholding
|
162 |
+
the predicted mask logits at high and low values.
|
163 |
+
"""
|
164 |
+
# One mask is always contained inside the other.
|
165 |
+
# Save memory by preventing unnecessary cast to torch.int64
|
166 |
+
intersections = (
|
167 |
+
(masks > (mask_threshold + threshold_offset))
|
168 |
+
.sum(-1, dtype=torch.int16)
|
169 |
+
.sum(-1, dtype=torch.int32)
|
170 |
+
)
|
171 |
+
unions = (
|
172 |
+
(masks > (mask_threshold - threshold_offset))
|
173 |
+
.sum(-1, dtype=torch.int16)
|
174 |
+
.sum(-1, dtype=torch.int32)
|
175 |
+
)
|
176 |
+
return intersections / unions
|
177 |
+
|
178 |
+
|
179 |
+
def build_point_grid(n_per_side: int) -> np.ndarray:
|
180 |
+
"""Generates a 2D grid of points evenly spaced in [0,1]x[0,1]."""
|
181 |
+
offset = 1 / (2 * n_per_side)
|
182 |
+
points_one_side = np.linspace(offset, 1 - offset, n_per_side)
|
183 |
+
points_x = np.tile(points_one_side[None, :], (n_per_side, 1))
|
184 |
+
points_y = np.tile(points_one_side[:, None], (1, n_per_side))
|
185 |
+
points = np.stack([points_x, points_y], axis=-1).reshape(-1, 2)
|
186 |
+
return points
|
187 |
+
|
188 |
+
|
189 |
+
def build_all_layer_point_grids(
|
190 |
+
n_per_side: int, n_layers: int, scale_per_layer: int
|
191 |
+
) -> List[np.ndarray]:
|
192 |
+
"""Generates point grids for all crop layers."""
|
193 |
+
points_by_layer = []
|
194 |
+
for i in range(n_layers + 1):
|
195 |
+
n_points = int(n_per_side / (scale_per_layer**i))
|
196 |
+
points_by_layer.append(build_point_grid(n_points))
|
197 |
+
return points_by_layer
|
198 |
+
|
199 |
+
|
200 |
+
def generate_crop_boxes(
|
201 |
+
im_size: Tuple[int, ...], n_layers: int, overlap_ratio: float
|
202 |
+
) -> Tuple[List[List[int]], List[int]]:
|
203 |
+
"""
|
204 |
+
Generates a list of crop boxes of different sizes. Each layer
|
205 |
+
has (2**i)**2 boxes for the ith layer.
|
206 |
+
"""
|
207 |
+
crop_boxes, layer_idxs = [], []
|
208 |
+
im_h, im_w = im_size
|
209 |
+
short_side = min(im_h, im_w)
|
210 |
+
|
211 |
+
# Original image
|
212 |
+
crop_boxes.append([0, 0, im_w, im_h])
|
213 |
+
layer_idxs.append(0)
|
214 |
+
|
215 |
+
def crop_len(orig_len, n_crops, overlap):
|
216 |
+
return int(math.ceil((overlap * (n_crops - 1) + orig_len) / n_crops))
|
217 |
+
|
218 |
+
for i_layer in range(n_layers):
|
219 |
+
n_crops_per_side = 2 ** (i_layer + 1)
|
220 |
+
overlap = int(overlap_ratio * short_side * (2 / n_crops_per_side))
|
221 |
+
|
222 |
+
crop_w = crop_len(im_w, n_crops_per_side, overlap)
|
223 |
+
crop_h = crop_len(im_h, n_crops_per_side, overlap)
|
224 |
+
|
225 |
+
crop_box_x0 = [int((crop_w - overlap) * i) for i in range(n_crops_per_side)]
|
226 |
+
crop_box_y0 = [int((crop_h - overlap) * i) for i in range(n_crops_per_side)]
|
227 |
+
|
228 |
+
# Crops in XYWH format
|
229 |
+
for x0, y0 in product(crop_box_x0, crop_box_y0):
|
230 |
+
box = [x0, y0, min(x0 + crop_w, im_w), min(y0 + crop_h, im_h)]
|
231 |
+
crop_boxes.append(box)
|
232 |
+
layer_idxs.append(i_layer + 1)
|
233 |
+
|
234 |
+
return crop_boxes, layer_idxs
|
235 |
+
|
236 |
+
|
237 |
+
def uncrop_boxes_xyxy(boxes: torch.Tensor, crop_box: List[int]) -> torch.Tensor:
|
238 |
+
x0, y0, _, _ = crop_box
|
239 |
+
offset = torch.tensor([[x0, y0, x0, y0]], device=boxes.device)
|
240 |
+
# Check if boxes has a channel dimension
|
241 |
+
if len(boxes.shape) == 3:
|
242 |
+
offset = offset.unsqueeze(1)
|
243 |
+
return boxes + offset
|
244 |
+
|
245 |
+
|
246 |
+
def uncrop_points(points: torch.Tensor, crop_box: List[int]) -> torch.Tensor:
|
247 |
+
x0, y0, _, _ = crop_box
|
248 |
+
offset = torch.tensor([[x0, y0]], device=points.device)
|
249 |
+
# Check if points has a channel dimension
|
250 |
+
if len(points.shape) == 3:
|
251 |
+
offset = offset.unsqueeze(1)
|
252 |
+
return points + offset
|
253 |
+
|
254 |
+
|
255 |
+
def uncrop_masks(
|
256 |
+
masks: torch.Tensor, crop_box: List[int], orig_h: int, orig_w: int
|
257 |
+
) -> torch.Tensor:
|
258 |
+
x0, y0, x1, y1 = crop_box
|
259 |
+
if x0 == 0 and y0 == 0 and x1 == orig_w and y1 == orig_h:
|
260 |
+
return masks
|
261 |
+
# Coordinate transform masks
|
262 |
+
pad_x, pad_y = orig_w - (x1 - x0), orig_h - (y1 - y0)
|
263 |
+
pad = (x0, pad_x - x0, y0, pad_y - y0)
|
264 |
+
return torch.nn.functional.pad(masks, pad, value=0)
|
265 |
+
|
266 |
+
|
267 |
+
def remove_small_regions(
|
268 |
+
mask: np.ndarray, area_thresh: float, mode: str
|
269 |
+
) -> Tuple[np.ndarray, bool]:
|
270 |
+
"""
|
271 |
+
Removes small disconnected regions and holes in a mask. Returns the
|
272 |
+
mask and an indicator of if the mask has been modified.
|
273 |
+
"""
|
274 |
+
import cv2 # type: ignore
|
275 |
+
|
276 |
+
assert mode in ["holes", "islands"]
|
277 |
+
correct_holes = mode == "holes"
|
278 |
+
working_mask = (correct_holes ^ mask).astype(np.uint8)
|
279 |
+
n_labels, regions, stats, _ = cv2.connectedComponentsWithStats(working_mask, 8)
|
280 |
+
sizes = stats[:, -1][1:] # Row 0 is background label
|
281 |
+
small_regions = [i + 1 for i, s in enumerate(sizes) if s < area_thresh]
|
282 |
+
if len(small_regions) == 0:
|
283 |
+
return mask, False
|
284 |
+
fill_labels = [0] + small_regions
|
285 |
+
if not correct_holes:
|
286 |
+
fill_labels = [i for i in range(n_labels) if i not in fill_labels]
|
287 |
+
# If every region is below threshold, keep largest
|
288 |
+
if len(fill_labels) == 0:
|
289 |
+
fill_labels = [int(np.argmax(sizes)) + 1]
|
290 |
+
mask = np.isin(regions, fill_labels)
|
291 |
+
return mask, True
|
292 |
+
|
293 |
+
|
294 |
+
def coco_encode_rle(uncompressed_rle: Dict[str, Any]) -> Dict[str, Any]:
|
295 |
+
from pycocotools import mask as mask_utils # type: ignore
|
296 |
+
|
297 |
+
h, w = uncompressed_rle["size"]
|
298 |
+
rle = mask_utils.frPyObjects(uncompressed_rle, h, w)
|
299 |
+
rle["counts"] = rle["counts"].decode("utf-8") # Necessary to serialize with json
|
300 |
+
return rle
|
301 |
+
|
302 |
+
|
303 |
+
def batched_mask_to_box(masks: torch.Tensor) -> torch.Tensor:
|
304 |
+
"""
|
305 |
+
Calculates boxes in XYXY format around masks. Return [0,0,0,0] for
|
306 |
+
an empty mask. For input shape C1xC2x...xHxW, the output shape is C1xC2x...x4.
|
307 |
+
"""
|
308 |
+
# torch.max below raises an error on empty inputs, just skip in this case
|
309 |
+
if torch.numel(masks) == 0:
|
310 |
+
return torch.zeros(*masks.shape[:-2], 4, device=masks.device)
|
311 |
+
|
312 |
+
# Normalize shape to CxHxW
|
313 |
+
shape = masks.shape
|
314 |
+
h, w = shape[-2:]
|
315 |
+
if len(shape) > 2:
|
316 |
+
masks = masks.flatten(0, -3)
|
317 |
+
else:
|
318 |
+
masks = masks.unsqueeze(0)
|
319 |
+
|
320 |
+
# Get top and bottom edges
|
321 |
+
in_height, _ = torch.max(masks, dim=-1)
|
322 |
+
in_height_coords = in_height * torch.arange(h, device=in_height.device)[None, :]
|
323 |
+
bottom_edges, _ = torch.max(in_height_coords, dim=-1)
|
324 |
+
in_height_coords = in_height_coords + h * (~in_height)
|
325 |
+
top_edges, _ = torch.min(in_height_coords, dim=-1)
|
326 |
+
|
327 |
+
# Get left and right edges
|
328 |
+
in_width, _ = torch.max(masks, dim=-2)
|
329 |
+
in_width_coords = in_width * torch.arange(w, device=in_width.device)[None, :]
|
330 |
+
right_edges, _ = torch.max(in_width_coords, dim=-1)
|
331 |
+
in_width_coords = in_width_coords + w * (~in_width)
|
332 |
+
left_edges, _ = torch.min(in_width_coords, dim=-1)
|
333 |
+
|
334 |
+
# If the mask is empty the right edge will be to the left of the left edge.
|
335 |
+
# Replace these boxes with [0, 0, 0, 0]
|
336 |
+
empty_filter = (right_edges < left_edges) | (bottom_edges < top_edges)
|
337 |
+
out = torch.stack([left_edges, top_edges, right_edges, bottom_edges], dim=-1)
|
338 |
+
out = out * (~empty_filter).unsqueeze(-1)
|
339 |
+
|
340 |
+
# Return to original shape
|
341 |
+
if len(shape) > 2:
|
342 |
+
out = out.reshape(*shape[:-2], 4)
|
343 |
+
else:
|
344 |
+
out = out[0]
|
345 |
+
|
346 |
+
return out
|
SAM/utils/transforms.py
ADDED
@@ -0,0 +1,102 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
2 |
+
# All rights reserved.
|
3 |
+
|
4 |
+
# This source code is licensed under the license found in the
|
5 |
+
# LICENSE file in the root directory of this source tree.
|
6 |
+
|
7 |
+
import numpy as np
|
8 |
+
import torch
|
9 |
+
from torch.nn import functional as F
|
10 |
+
from torchvision.transforms.functional import resize, to_pil_image # type: ignore
|
11 |
+
|
12 |
+
from copy import deepcopy
|
13 |
+
from typing import Tuple
|
14 |
+
|
15 |
+
|
16 |
+
class ResizeLongestSide:
|
17 |
+
"""
|
18 |
+
Resizes images to the longest side 'target_length', as well as provides
|
19 |
+
methods for resizing coordinates and boxes. Provides methods for
|
20 |
+
transforming both numpy array and batched torch tensors.
|
21 |
+
"""
|
22 |
+
|
23 |
+
def __init__(self, target_length: int) -> None:
|
24 |
+
self.target_length = target_length
|
25 |
+
|
26 |
+
def apply_image(self, image: np.ndarray) -> np.ndarray:
|
27 |
+
"""
|
28 |
+
Expects a numpy array with shape HxWxC in uint8 format.
|
29 |
+
"""
|
30 |
+
target_size = self.get_preprocess_shape(image.shape[0], image.shape[1], self.target_length)
|
31 |
+
return np.array(resize(to_pil_image(image), target_size))
|
32 |
+
|
33 |
+
def apply_coords(self, coords: np.ndarray, original_size: Tuple[int, ...]) -> np.ndarray:
|
34 |
+
"""
|
35 |
+
Expects a numpy array of length 2 in the final dimension. Requires the
|
36 |
+
original image size in (H, W) format.
|
37 |
+
"""
|
38 |
+
old_h, old_w = original_size
|
39 |
+
new_h, new_w = self.get_preprocess_shape(
|
40 |
+
original_size[0], original_size[1], self.target_length
|
41 |
+
)
|
42 |
+
coords = deepcopy(coords).astype(float)
|
43 |
+
coords[..., 0] = coords[..., 0] * (new_w / old_w)
|
44 |
+
coords[..., 1] = coords[..., 1] * (new_h / old_h)
|
45 |
+
return coords
|
46 |
+
|
47 |
+
def apply_boxes(self, boxes: np.ndarray, original_size: Tuple[int, ...]) -> np.ndarray:
|
48 |
+
"""
|
49 |
+
Expects a numpy array shape Bx4. Requires the original image size
|
50 |
+
in (H, W) format.
|
51 |
+
"""
|
52 |
+
boxes = self.apply_coords(boxes.reshape(-1, 2, 2), original_size)
|
53 |
+
return boxes.reshape(-1, 4)
|
54 |
+
|
55 |
+
def apply_image_torch(self, image: torch.Tensor) -> torch.Tensor:
|
56 |
+
"""
|
57 |
+
Expects batched images with shape BxCxHxW and float format. This
|
58 |
+
transformation may not exactly match apply_image. apply_image is
|
59 |
+
the transformation expected by the model.
|
60 |
+
"""
|
61 |
+
# Expects an image in BCHW format. May not exactly match apply_image.
|
62 |
+
target_size = self.get_preprocess_shape(image.shape[2], image.shape[3], self.target_length)
|
63 |
+
return F.interpolate(
|
64 |
+
image, target_size, mode="bilinear", align_corners=False, antialias=True
|
65 |
+
)
|
66 |
+
|
67 |
+
def apply_coords_torch(
|
68 |
+
self, coords: torch.Tensor, original_size: Tuple[int, ...]
|
69 |
+
) -> torch.Tensor:
|
70 |
+
"""
|
71 |
+
Expects a torch tensor with length 2 in the last dimension. Requires the
|
72 |
+
original image size in (H, W) format.
|
73 |
+
"""
|
74 |
+
old_h, old_w = original_size
|
75 |
+
new_h, new_w = self.get_preprocess_shape(
|
76 |
+
original_size[0], original_size[1], self.target_length
|
77 |
+
)
|
78 |
+
coords = deepcopy(coords).to(torch.float)
|
79 |
+
coords[..., 0] = coords[..., 0] * (new_w / old_w)
|
80 |
+
coords[..., 1] = coords[..., 1] * (new_h / old_h)
|
81 |
+
return coords
|
82 |
+
|
83 |
+
def apply_boxes_torch(
|
84 |
+
self, boxes: torch.Tensor, original_size: Tuple[int, ...]
|
85 |
+
) -> torch.Tensor:
|
86 |
+
"""
|
87 |
+
Expects a torch tensor with shape Bx4. Requires the original image
|
88 |
+
size in (H, W) format.
|
89 |
+
"""
|
90 |
+
boxes = self.apply_coords_torch(boxes.reshape(-1, 2, 2), original_size)
|
91 |
+
return boxes.reshape(-1, 4)
|
92 |
+
|
93 |
+
@staticmethod
|
94 |
+
def get_preprocess_shape(oldh: int, oldw: int, long_side_length: int) -> Tuple[int, int]:
|
95 |
+
"""
|
96 |
+
Compute the output size given input size and target long side length.
|
97 |
+
"""
|
98 |
+
scale = long_side_length * 1.0 / max(oldh, oldw)
|
99 |
+
newh, neww = oldh * scale, oldw * scale
|
100 |
+
neww = int(neww + 0.5)
|
101 |
+
newh = int(newh + 0.5)
|
102 |
+
return (newh, neww)
|
__pycache__/evaluate.cpython-310.pyc
ADDED
Binary file (3.59 kB). View file
|
|
__pycache__/load_nvos.cpython-310.pyc
ADDED
Binary file (4.75 kB). View file
|
|
app.py
ADDED
@@ -0,0 +1,353 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env python3
|
2 |
+
# Copyright (C) 2024-present Naver Corporation. All rights reserved.
|
3 |
+
# Licensed under CC BY-NC-SA 4.0 (non-commercial use only).
|
4 |
+
#
|
5 |
+
# --------------------------------------------------------
|
6 |
+
# gradio demo
|
7 |
+
# --------------------------------------------------------
|
8 |
+
import argparse
|
9 |
+
import gradio
|
10 |
+
import os
|
11 |
+
import torch
|
12 |
+
import numpy as np
|
13 |
+
import tempfile
|
14 |
+
import functools
|
15 |
+
import trimesh
|
16 |
+
import copy
|
17 |
+
from scipy.spatial.transform import Rotation
|
18 |
+
|
19 |
+
from dust3r.inference import inference, load_model
|
20 |
+
from dust3r.image_pairs import make_pairs
|
21 |
+
from dust3r.utils.image import load_images, rgb
|
22 |
+
from dust3r.utils.device import to_numpy
|
23 |
+
from dust3r.viz import add_scene_cam, CAM_COLORS, OPENGL, pts3d_to_trimesh, cat_meshes
|
24 |
+
from dust3r.cloud_opt import global_aligner, GlobalAlignerMode
|
25 |
+
|
26 |
+
import matplotlib.pyplot as plt
|
27 |
+
plt.ion()
|
28 |
+
|
29 |
+
torch.backends.cuda.matmul.allow_tf32 = True # for gpu >= Ampere and pytorch >= 1.12
|
30 |
+
batch_size = 1
|
31 |
+
|
32 |
+
def show_mask(mask, ax, random_color=False):
|
33 |
+
if random_color:
|
34 |
+
color = np.concatenate([np.random.random(3), np.array([0.6])], axis=0)
|
35 |
+
else:
|
36 |
+
color = np.array([30/255, 144/255, 255/255, 0.6])
|
37 |
+
h, w = mask.shape[-2:]
|
38 |
+
mask_image = mask.reshape(h, w, 1) * color.reshape(1, 1, -1)
|
39 |
+
ax.imshow(mask_image)
|
40 |
+
|
41 |
+
def show_points(coords, labels, ax, marker_size=375):
|
42 |
+
pos_points = coords[labels==1]
|
43 |
+
neg_points = coords[labels==0]
|
44 |
+
ax.scatter(pos_points[:, 0], pos_points[:, 1], color='green', marker='*', s=marker_size, edgecolor='white', linewidth=1.25)
|
45 |
+
ax.scatter(neg_points[:, 0], neg_points[:, 1], color='red', marker='*', s=marker_size, edgecolor='white', linewidth=1.25)
|
46 |
+
|
47 |
+
def show_box(box, ax):
|
48 |
+
x0, y0 = box[0], box[1]
|
49 |
+
w, h = box[2] - box[0], box[3] - box[1]
|
50 |
+
ax.add_patch(plt.Rectangle((x0, y0), w, h, edgecolor='green', facecolor=(0,0,0,0), lw=2))
|
51 |
+
|
52 |
+
from SAM import SamPredictor
|
53 |
+
from SAM.build_sam import sam_model_registry
|
54 |
+
sam_checkpoint = "checkpoints/sam_vit_b_01ec64.pth"
|
55 |
+
model_type = "vit_b"
|
56 |
+
|
57 |
+
sam = sam_model_registry[model_type](checkpoint=sam_checkpoint)
|
58 |
+
sam.to(device='cuda')
|
59 |
+
predictor = SamPredictor(sam)
|
60 |
+
|
61 |
+
def get_args_parser():
|
62 |
+
parser = argparse.ArgumentParser()
|
63 |
+
parser_url = parser.add_mutually_exclusive_group()
|
64 |
+
parser_url.add_argument("--local_network", action='store_true', default=False,
|
65 |
+
help="make app accessible on local network: address will be set to 0.0.0.0")
|
66 |
+
parser_url.add_argument("--server_name", type=str, default=None, help="server url, default is 127.0.0.1")
|
67 |
+
parser.add_argument("--image_size", type=int, default=512, choices=[512, 224], help="image size")
|
68 |
+
parser.add_argument("--server_port", type=int, help=("will start gradio app on this port (if available). "
|
69 |
+
"If None, will search for an available port starting at 7860."),
|
70 |
+
default=None)
|
71 |
+
parser.add_argument("--weights", type=str, required=True, help="path to the model weights")
|
72 |
+
parser.add_argument("--device", type=str, default='cuda', help="pytorch device")
|
73 |
+
parser.add_argument("--tmp_dir", type=str, default=None, help="value for tempfile.tempdir")
|
74 |
+
return parser
|
75 |
+
|
76 |
+
|
77 |
+
def _convert_scene_output_to_glb(outdir, imgs, pts3d, mask, focals, cams2world, cam_size=0.05,
|
78 |
+
cam_color=None, as_pointcloud=False, transparent_cams=False):
|
79 |
+
assert len(pts3d) == len(mask) <= len(imgs) <= len(cams2world) == len(focals)
|
80 |
+
pts3d = to_numpy(pts3d)
|
81 |
+
imgs = to_numpy(imgs)
|
82 |
+
focals = to_numpy(focals)
|
83 |
+
cams2world = to_numpy(cams2world)
|
84 |
+
|
85 |
+
scene = trimesh.Scene()
|
86 |
+
|
87 |
+
# full pointcloud
|
88 |
+
if as_pointcloud:
|
89 |
+
pts = np.concatenate([p[m] for p, m in zip(pts3d, mask)])
|
90 |
+
col = np.concatenate([p[m] for p, m in zip(imgs, mask)])
|
91 |
+
pct = trimesh.PointCloud(pts.reshape(-1, 3), colors=col.reshape(-1, 3))
|
92 |
+
scene.add_geometry(pct)
|
93 |
+
else:
|
94 |
+
meshes = []
|
95 |
+
for i in range(len(imgs)):
|
96 |
+
meshes.append(pts3d_to_trimesh(imgs[i], pts3d[i], mask[i]))
|
97 |
+
mesh = trimesh.Trimesh(**cat_meshes(meshes))
|
98 |
+
scene.add_geometry(mesh)
|
99 |
+
|
100 |
+
# add each camera
|
101 |
+
for i, pose_c2w in enumerate(cams2world):
|
102 |
+
if isinstance(cam_color, list):
|
103 |
+
camera_edge_color = cam_color[i]
|
104 |
+
else:
|
105 |
+
camera_edge_color = cam_color or CAM_COLORS[i % len(CAM_COLORS)]
|
106 |
+
add_scene_cam(scene, pose_c2w, camera_edge_color,
|
107 |
+
None if transparent_cams else imgs[i], focals[i],
|
108 |
+
imsize=imgs[i].shape[1::-1], screen_width=cam_size)
|
109 |
+
|
110 |
+
rot = np.eye(4)
|
111 |
+
rot[:3, :3] = Rotation.from_euler('y', np.deg2rad(180)).as_matrix()
|
112 |
+
scene.apply_transform(np.linalg.inv(cams2world[0] @ OPENGL @ rot))
|
113 |
+
outfile = os.path.join(outdir, 'scene.glb')
|
114 |
+
print('(exporting 3D scene to', outfile, ')')
|
115 |
+
scene.export(file_obj=outfile)
|
116 |
+
return outfile
|
117 |
+
|
118 |
+
|
119 |
+
def get_3D_model_from_scene(outdir, scene, min_conf_thr=3, as_pointcloud=False, mask_sky=False,
|
120 |
+
clean_depth=False, transparent_cams=False, cam_size=0.05):
|
121 |
+
"""
|
122 |
+
extract 3D_model (glb file) from a reconstructed scene
|
123 |
+
"""
|
124 |
+
if scene is None:
|
125 |
+
return None
|
126 |
+
# post processes
|
127 |
+
if clean_depth:
|
128 |
+
scene = scene.clean_pointcloud()
|
129 |
+
if mask_sky:
|
130 |
+
scene = scene.mask_sky()
|
131 |
+
|
132 |
+
# get optimized values from scene
|
133 |
+
rgbimg = scene.imgs
|
134 |
+
# print('SAM step...')
|
135 |
+
# predictor.set_image((rgbimg[0] * 255).astype(np.uint8))
|
136 |
+
# h,w,c = rgbimg[0].shape
|
137 |
+
# input_point = np.array([
|
138 |
+
# [int(w/2), int(h/2)],
|
139 |
+
# [int(w/2), int(h/2)-20]
|
140 |
+
# ])
|
141 |
+
# input_label = np.array([1,1])
|
142 |
+
# masks1, scores, logits = predictor.predict(
|
143 |
+
# point_coords=input_point,
|
144 |
+
# point_labels=input_label,
|
145 |
+
# multimask_output=False,
|
146 |
+
# )
|
147 |
+
# fig, ax = plt.subplots(4, 2, figsize=(20, 20))
|
148 |
+
# show_mask(masks1[0], ax[0][0], random_color=True)
|
149 |
+
# show_points(input_point, input_label, ax[0][0])
|
150 |
+
# ax[0][1].imshow(rgbimg[0])
|
151 |
+
|
152 |
+
# predictor.set_image((rgbimg[1] * 255).astype(np.uint8))
|
153 |
+
# h,w,c = rgbimg[1].shape
|
154 |
+
# input_point = np.array([
|
155 |
+
# [int(w/2), int(h/2)],
|
156 |
+
# [int(w/2), int(h/2)-20]
|
157 |
+
# ])
|
158 |
+
# input_label = np.array([1,1])
|
159 |
+
# masks2, scores, logits = predictor.predict(
|
160 |
+
# point_coords=input_point,
|
161 |
+
# point_labels=input_label,
|
162 |
+
# multimask_output=False,
|
163 |
+
# )
|
164 |
+
focals = scene.get_focals().cpu()
|
165 |
+
cams2world = scene.get_im_poses().cpu()
|
166 |
+
# 3D pointcloud from depthmap, poses and intrinsics
|
167 |
+
pts3d = to_numpy(scene.get_pts3d())
|
168 |
+
scene.min_conf_thr = float(scene.conf_trf(torch.tensor(min_conf_thr)))
|
169 |
+
msk = to_numpy(scene.get_masks())
|
170 |
+
# ax[1][0].imshow(msk[0])
|
171 |
+
# msk[0] = msk[0] & masks1[0]
|
172 |
+
# ax[1][1].imshow(msk[0])
|
173 |
+
# ax[2][1].imshow(rgbimg[1])
|
174 |
+
# show_mask(masks2[0], ax[2][0], random_color=True)
|
175 |
+
# show_points(input_point, input_label, ax[2][0])
|
176 |
+
# ax[3][0].imshow(msk[1])
|
177 |
+
# # msk[1] = msk[1] & masks2[0]
|
178 |
+
# ax[3][1].imshow(msk[1])
|
179 |
+
# plt.savefig("rgb.png")
|
180 |
+
# import pdb
|
181 |
+
# pdb.set_trace()
|
182 |
+
return _convert_scene_output_to_glb(outdir, rgbimg, pts3d, msk, focals, cams2world, as_pointcloud=as_pointcloud,
|
183 |
+
transparent_cams=transparent_cams, cam_size=cam_size)
|
184 |
+
|
185 |
+
|
186 |
+
def get_reconstructed_scene(outdir, model, device, image_size, filelist, schedule, niter, min_conf_thr,
|
187 |
+
as_pointcloud, mask_sky, clean_depth, transparent_cams, cam_size,
|
188 |
+
scenegraph_type, winsize, refid):
|
189 |
+
"""
|
190 |
+
from a list of images, run dust3r inference, global aligner.
|
191 |
+
then run get_3D_model_from_scene
|
192 |
+
"""
|
193 |
+
imgs = load_images(filelist, size=image_size)
|
194 |
+
if len(imgs) == 1:
|
195 |
+
imgs = [imgs[0], copy.deepcopy(imgs[0])]
|
196 |
+
imgs[1]['idx'] = 1
|
197 |
+
if scenegraph_type == "swin":
|
198 |
+
scenegraph_type = scenegraph_type + "-" + str(winsize)
|
199 |
+
elif scenegraph_type == "oneref":
|
200 |
+
scenegraph_type = scenegraph_type + "-" + str(refid)
|
201 |
+
|
202 |
+
pairs = make_pairs(imgs, scene_graph=scenegraph_type, prefilter=None, symmetrize=True)
|
203 |
+
output = inference(pairs, model, device, batch_size=batch_size)
|
204 |
+
|
205 |
+
mode = GlobalAlignerMode.PointCloudOptimizer if len(imgs) > 2 else GlobalAlignerMode.PairViewer
|
206 |
+
scene = global_aligner(output, device=device, mode=mode)
|
207 |
+
lr = 0.01
|
208 |
+
|
209 |
+
if mode == GlobalAlignerMode.PointCloudOptimizer:
|
210 |
+
loss = scene.compute_global_alignment(init='mst', niter=niter, schedule=schedule, lr=lr)
|
211 |
+
|
212 |
+
outfile = get_3D_model_from_scene(outdir, scene, min_conf_thr, as_pointcloud, mask_sky,
|
213 |
+
clean_depth, transparent_cams, cam_size)
|
214 |
+
|
215 |
+
# also return rgb, depth and confidence imgs
|
216 |
+
# depth is normalized with the max value for all images
|
217 |
+
# we apply the jet colormap on the confidence maps
|
218 |
+
rgbimg = scene.imgs
|
219 |
+
depths = to_numpy(scene.get_depthmaps())
|
220 |
+
confs = to_numpy([c for c in scene.im_conf])
|
221 |
+
cmap = plt.get_cmap('jet')
|
222 |
+
depths_max = max([d.max() for d in depths])
|
223 |
+
depths = [d/depths_max for d in depths]
|
224 |
+
confs_max = max([d.max() for d in confs])
|
225 |
+
confs = [cmap(d/confs_max) for d in confs]
|
226 |
+
|
227 |
+
imgs = []
|
228 |
+
for i in range(len(rgbimg)):
|
229 |
+
imgs.append(rgbimg[i])
|
230 |
+
imgs.append(rgb(depths[i]))
|
231 |
+
imgs.append(rgb(confs[i]))
|
232 |
+
|
233 |
+
return scene, outfile, imgs
|
234 |
+
|
235 |
+
|
236 |
+
def set_scenegraph_options(inputfiles, winsize, refid, scenegraph_type):
|
237 |
+
num_files = len(inputfiles) if inputfiles is not None else 1
|
238 |
+
max_winsize = max(1, (num_files - 1)//2)
|
239 |
+
if scenegraph_type == "swin":
|
240 |
+
winsize = gradio.Slider(label="Scene Graph: Window Size", value=max_winsize,
|
241 |
+
minimum=1, maximum=max_winsize, step=1, visible=True)
|
242 |
+
refid = gradio.Slider(label="Scene Graph: Id", value=0, minimum=0,
|
243 |
+
maximum=num_files-1, step=1, visible=False)
|
244 |
+
elif scenegraph_type == "oneref":
|
245 |
+
winsize = gradio.Slider(label="Scene Graph: Window Size", value=max_winsize,
|
246 |
+
minimum=1, maximum=max_winsize, step=1, visible=False)
|
247 |
+
refid = gradio.Slider(label="Scene Graph: Id", value=0, minimum=0,
|
248 |
+
maximum=num_files-1, step=1, visible=True)
|
249 |
+
else:
|
250 |
+
winsize = gradio.Slider(label="Scene Graph: Window Size", value=max_winsize,
|
251 |
+
minimum=1, maximum=max_winsize, step=1, visible=False)
|
252 |
+
refid = gradio.Slider(label="Scene Graph: Id", value=0, minimum=0,
|
253 |
+
maximum=num_files-1, step=1, visible=False)
|
254 |
+
return winsize, refid
|
255 |
+
|
256 |
+
|
257 |
+
def main_demo(tmpdirname, model, device, image_size, server_name, server_port):
|
258 |
+
recon_fun = functools.partial(get_reconstructed_scene, tmpdirname, model, device, image_size)
|
259 |
+
model_from_scene_fun = functools.partial(get_3D_model_from_scene, tmpdirname)
|
260 |
+
with gradio.Blocks(css=""".gradio-container {margin: 0 !important; min-width: 100%};""", title="DUSt3R Demo") as demo:
|
261 |
+
# scene state is save so that you can change conf_thr, cam_size... without rerunning the inference
|
262 |
+
scene = gradio.State(None)
|
263 |
+
gradio.HTML('<h2 style="text-align: center;">DUSt3R Demo</h2>')
|
264 |
+
with gradio.Column():
|
265 |
+
inputfiles = gradio.File(file_count="multiple")
|
266 |
+
with gradio.Row():
|
267 |
+
schedule = gradio.Dropdown(["linear", "cosine"],
|
268 |
+
value='linear', label="schedule", info="For global alignment!")
|
269 |
+
niter = gradio.Number(value=300, precision=0, minimum=0, maximum=5000,
|
270 |
+
label="num_iterations", info="For global alignment!")
|
271 |
+
scenegraph_type = gradio.Dropdown(["complete", "swin", "oneref"],
|
272 |
+
value='complete', label="Scenegraph",
|
273 |
+
info="Define how to make pairs",
|
274 |
+
interactive=True)
|
275 |
+
winsize = gradio.Slider(label="Scene Graph: Window Size", value=1,
|
276 |
+
minimum=1, maximum=1, step=1, visible=False)
|
277 |
+
refid = gradio.Slider(label="Scene Graph: Id", value=0, minimum=0, maximum=0, step=1, visible=False)
|
278 |
+
|
279 |
+
run_btn = gradio.Button("Run")
|
280 |
+
|
281 |
+
with gradio.Row():
|
282 |
+
# adjust the confidence threshold
|
283 |
+
min_conf_thr = gradio.Slider(label="min_conf_thr", value=3.0, minimum=1.0, maximum=20, step=0.1)
|
284 |
+
# adjust the camera size in the output pointcloud
|
285 |
+
cam_size = gradio.Slider(label="cam_size", value=0.05, minimum=0.001, maximum=0.1, step=0.001)
|
286 |
+
with gradio.Row():
|
287 |
+
as_pointcloud = gradio.Checkbox(value=False, label="As pointcloud")
|
288 |
+
# two post process implemented
|
289 |
+
mask_sky = gradio.Checkbox(value=False, label="Mask sky")
|
290 |
+
clean_depth = gradio.Checkbox(value=True, label="Clean-up depthmaps")
|
291 |
+
transparent_cams = gradio.Checkbox(value=False, label="Transparent cameras")
|
292 |
+
|
293 |
+
outmodel = gradio.Model3D()
|
294 |
+
outgallery = gradio.Gallery(label='rgb,depth,confidence', columns=3, height="100%")
|
295 |
+
|
296 |
+
# events
|
297 |
+
scenegraph_type.change(set_scenegraph_options,
|
298 |
+
inputs=[inputfiles, winsize, refid, scenegraph_type],
|
299 |
+
outputs=[winsize, refid])
|
300 |
+
inputfiles.change(set_scenegraph_options,
|
301 |
+
inputs=[inputfiles, winsize, refid, scenegraph_type],
|
302 |
+
outputs=[winsize, refid])
|
303 |
+
run_btn.click(fn=recon_fun,
|
304 |
+
inputs=[inputfiles, schedule, niter, min_conf_thr, as_pointcloud,
|
305 |
+
mask_sky, clean_depth, transparent_cams, cam_size,
|
306 |
+
scenegraph_type, winsize, refid],
|
307 |
+
outputs=[scene, outmodel, outgallery])
|
308 |
+
min_conf_thr.release(fn=model_from_scene_fun,
|
309 |
+
inputs=[scene, min_conf_thr, as_pointcloud, mask_sky,
|
310 |
+
clean_depth, transparent_cams, cam_size],
|
311 |
+
outputs=outmodel)
|
312 |
+
cam_size.change(fn=model_from_scene_fun,
|
313 |
+
inputs=[scene, min_conf_thr, as_pointcloud, mask_sky,
|
314 |
+
clean_depth, transparent_cams, cam_size],
|
315 |
+
outputs=outmodel)
|
316 |
+
as_pointcloud.change(fn=model_from_scene_fun,
|
317 |
+
inputs=[scene, min_conf_thr, as_pointcloud, mask_sky,
|
318 |
+
clean_depth, transparent_cams, cam_size],
|
319 |
+
outputs=outmodel)
|
320 |
+
mask_sky.change(fn=model_from_scene_fun,
|
321 |
+
inputs=[scene, min_conf_thr, as_pointcloud, mask_sky,
|
322 |
+
clean_depth, transparent_cams, cam_size],
|
323 |
+
outputs=outmodel)
|
324 |
+
clean_depth.change(fn=model_from_scene_fun,
|
325 |
+
inputs=[scene, min_conf_thr, as_pointcloud, mask_sky,
|
326 |
+
clean_depth, transparent_cams, cam_size],
|
327 |
+
outputs=outmodel)
|
328 |
+
transparent_cams.change(model_from_scene_fun,
|
329 |
+
inputs=[scene, min_conf_thr, as_pointcloud, mask_sky,
|
330 |
+
clean_depth, transparent_cams, cam_size],
|
331 |
+
outputs=outmodel)
|
332 |
+
demo.launch(share=False, server_name=server_name, server_port=server_port)
|
333 |
+
|
334 |
+
|
335 |
+
if __name__ == '__main__':
|
336 |
+
parser = get_args_parser()
|
337 |
+
args = parser.parse_args()
|
338 |
+
|
339 |
+
if args.tmp_dir is not None:
|
340 |
+
tmp_path = args.tmp_dir
|
341 |
+
os.makedirs(tmp_path, exist_ok=True)
|
342 |
+
tempfile.tempdir = tmp_path
|
343 |
+
|
344 |
+
if args.server_name is not None:
|
345 |
+
server_name = args.server_name
|
346 |
+
else:
|
347 |
+
server_name = '0.0.0.0' if args.local_network else '127.0.0.1'
|
348 |
+
|
349 |
+
model = load_model(args.weights, args.device)
|
350 |
+
# dust3r will write the 3D model inside tmpdirname
|
351 |
+
with tempfile.TemporaryDirectory(suffix='dust3r_gradio_demo') as tmpdirname:
|
352 |
+
print('Outputing stuff in', tmpdirname)
|
353 |
+
main_demo(tmpdirname, model, args.device, args.image_size, server_name, args.server_port)
|
checkpoints/DUSt3R_ViTLarge_BaseDecoder_512_dpt.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:5e8bbf0c4d1d6007f5343f3f45814b956ddc5bbb4d00cb66beaf73afe5c53b34
|
3 |
+
size 2285019929
|
checkpoints/sam_vit_b_01ec64.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ec2df62732614e57411cdcf32a23ffdf28910380d03139ee0f4fcbe91eb8c912
|
3 |
+
size 375042383
|
configs/default.py
ADDED
@@ -0,0 +1,119 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from copy import deepcopy
|
2 |
+
|
3 |
+
expname = None # experiment name
|
4 |
+
basedir = './logs/' # where to store ckpts and logs
|
5 |
+
|
6 |
+
''' Template of data options
|
7 |
+
'''
|
8 |
+
data = dict(
|
9 |
+
datadir=None, # path to dataset root folder
|
10 |
+
dataset_type=None, # blender | nsvf | blendedmvs | tankstemple | deepvoxels | co3d
|
11 |
+
inverse_y=False, # intrinsict mode (to support blendedmvs, nsvf, tankstemple)
|
12 |
+
flip_x=False, # to support co3d
|
13 |
+
flip_y=False, # to suppo/= 10
|
14 |
+
annot_path='', # to support co3d
|
15 |
+
split_path='', # to support co3d
|
16 |
+
sequence_name='', # to support co3d
|
17 |
+
# load2gpu_on_the_fly=False, # do not load all images into gpu (to save gpu memory)
|
18 |
+
load2gpu_on_the_fly=True, # do not load all images into gpu (to save gpu memory)
|
19 |
+
testskip=5, # subsample testset to preview results
|
20 |
+
white_bkgd=True, # use white background (note that some dataset don't provide alpha and with blended bg color)
|
21 |
+
rand_bkgd=False, # use random background during training
|
22 |
+
half_res=False, # [TODO]
|
23 |
+
bd_factor=.75,
|
24 |
+
movie_render_kwargs=dict(),
|
25 |
+
|
26 |
+
# Below are forward-facing llff specific settings.
|
27 |
+
ndc=False, # use ndc coordinate (only for forward-facing; not support yet)
|
28 |
+
spherify=False, # inward-facing
|
29 |
+
factor=4, # [TODO]
|
30 |
+
width=None, # enforce image width
|
31 |
+
height=None, # enforce image height
|
32 |
+
llffhold=8, # testsplit
|
33 |
+
load_depths=False, # load depth
|
34 |
+
|
35 |
+
# Below are unbounded inward-facing specific settings.
|
36 |
+
unbounded_inward=False,
|
37 |
+
unbounded_inner_r=1.0,
|
38 |
+
)
|
39 |
+
|
40 |
+
''' Template of training options
|
41 |
+
'''
|
42 |
+
coarse_train = dict(
|
43 |
+
N_iters=5000, # number of optimization steps
|
44 |
+
N_rand=8192, # batch size (number of random rays per optimization step)
|
45 |
+
#N_rand=1024, # batch size (number of random rays per optimization step)
|
46 |
+
lrate_density=1e-1, # lr of density voxel grid
|
47 |
+
lrate_k0=1e-1, # lr of color/feature voxel grid
|
48 |
+
lrate_rgbnet=1e-3, # lr of the mlp to preduct view-dependent color
|
49 |
+
lrate_decay=20, # lr decay by 0.1 after every lrate_decay*1000 steps
|
50 |
+
pervoxel_lr=True, # view-count-based lr
|
51 |
+
pervoxel_lr_downrate=1, # downsampled image for computing view-count-based lr
|
52 |
+
ray_sampler='random', # ray sampling strategies
|
53 |
+
weight_main=1.0, # weight of photometric loss
|
54 |
+
weight_entropy_last=0.01, # weight of background entropy loss
|
55 |
+
weight_nearclip=0,
|
56 |
+
weight_distortion=0,
|
57 |
+
weight_rgbper=0.1, # weight of per-point rgb loss
|
58 |
+
tv_every=1, # count total variation loss every tv_every step
|
59 |
+
tv_after=0, # count total variation loss from tv_from step
|
60 |
+
tv_before=0, # count total variation before the given number of iterations
|
61 |
+
tv_dense_before=0, # count total variation densely before the given number of iterations
|
62 |
+
weight_tv_density=0.0, # weight of total variation loss of density voxel grid
|
63 |
+
weight_tv_k0=0.0, # weight of total variation loss of color/feature voxel grid
|
64 |
+
pg_scale=[], # checkpoints for progressive scaling
|
65 |
+
decay_after_scale=1.0, # decay act_shift after scaling
|
66 |
+
skip_zero_grad_fields=[], # the variable name to skip optimizing parameters w/ zero grad in each iteration
|
67 |
+
maskout_lt_nviews=0,
|
68 |
+
)
|
69 |
+
|
70 |
+
fine_train = deepcopy(coarse_train)
|
71 |
+
fine_train.update(dict(
|
72 |
+
N_iters=20000,
|
73 |
+
pervoxel_lr=False,
|
74 |
+
ray_sampler='flatten',
|
75 |
+
weight_entropy_last=0.001,
|
76 |
+
weight_rgbper=0.01,
|
77 |
+
pg_scale=[1000, 2000, 3000, 4000],
|
78 |
+
skip_zero_grad_fields=['density', 'k0'],
|
79 |
+
))
|
80 |
+
|
81 |
+
''' Template of model and rendering options
|
82 |
+
'''
|
83 |
+
coarse_model_and_render = dict(
|
84 |
+
num_voxels=1024000, # expected number of voxel
|
85 |
+
num_voxels_base=1024000, # to rescale delta distance
|
86 |
+
density_type='DenseGrid', # DenseGrid, TensoRFGrid
|
87 |
+
k0_type='TensoRFGrid', # DenseGrid, TensoRFGrid
|
88 |
+
density_config=dict(),
|
89 |
+
k0_config=dict(n_comp=48),
|
90 |
+
mpi_depth=128, # the number of planes in Multiplane Image (work when ndc=True)
|
91 |
+
nearest=False, # nearest interpolation
|
92 |
+
pre_act_density=False, # pre-activated trilinear interpolation
|
93 |
+
in_act_density=False, # in-activated trilinear interpolation
|
94 |
+
bbox_thres=1e-3, # threshold to determine known free-space in the fine stage
|
95 |
+
mask_cache_thres=1e-3, # threshold to determine a tighten BBox in the fine stage
|
96 |
+
rgbnet_dim=0, # feature voxel grid dim
|
97 |
+
rgbnet_full_implicit=False, # let the colors MLP ignore feature voxel grid
|
98 |
+
rgbnet_direct=True, # set to False to treat the first 3 dim of feature voxel grid as diffuse rgb
|
99 |
+
rgbnet_depth=3, # depth of the colors MLP (there are rgbnet_depth-1 intermediate features)
|
100 |
+
rgbnet_width=128, # width of the colors MLP
|
101 |
+
alpha_init=1e-6, # set the alpha values everywhere at the begin of training
|
102 |
+
fast_color_thres=1e-7, # threshold of alpha value to skip the fine stage sampled point
|
103 |
+
maskout_near_cam_vox=True, # maskout grid points that between cameras and their near planes
|
104 |
+
world_bound_scale=1, # rescale the BBox enclosing the scene
|
105 |
+
stepsize=0.5, # sampling stepsize in volume rendering
|
106 |
+
)
|
107 |
+
|
108 |
+
fine_model_and_render = deepcopy(coarse_model_and_render)
|
109 |
+
fine_model_and_render.update(dict(
|
110 |
+
num_voxels=160**3,
|
111 |
+
num_voxels_base=160**3,
|
112 |
+
rgbnet_dim=12,
|
113 |
+
alpha_init=1e-2,
|
114 |
+
fast_color_thres=1e-4,
|
115 |
+
maskout_near_cam_vox=False,
|
116 |
+
world_bound_scale=1.05,
|
117 |
+
))
|
118 |
+
|
119 |
+
del deepcopy
|
configs/lerf/book_store.py
ADDED
@@ -0,0 +1,16 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
_base_ = './lerf_default.py'
|
2 |
+
|
3 |
+
expname = 'dcvgo_book_store'
|
4 |
+
|
5 |
+
data = dict(
|
6 |
+
datadir='./data/lerf_data/book_store',
|
7 |
+
factor=2, # 497 * 369
|
8 |
+
# factor=4,
|
9 |
+
movie_render_kwargs=dict(
|
10 |
+
shift_x=0.5, # positive right
|
11 |
+
shift_y=0.5, # negative down
|
12 |
+
shift_z=1,
|
13 |
+
scale_r=0,
|
14 |
+
pitch_deg=0, # negative look downward
|
15 |
+
),
|
16 |
+
)
|
configs/lerf/bouquet.py
ADDED
@@ -0,0 +1,16 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
_base_ = './lerf_default.py'
|
2 |
+
|
3 |
+
expname = 'dcvgo_bouquet'
|
4 |
+
|
5 |
+
data = dict(
|
6 |
+
datadir='./data/lerf_data/bouquet',
|
7 |
+
factor=2, # 497 * 369
|
8 |
+
# factor=4,
|
9 |
+
movie_render_kwargs=dict(
|
10 |
+
shift_x=0.0, # positive right
|
11 |
+
shift_y=-0.0, # negative down
|
12 |
+
shift_z=0,
|
13 |
+
scale_r=0.2,
|
14 |
+
pitch_deg=0, # negative look downward
|
15 |
+
),
|
16 |
+
)
|
configs/lerf/donuts.py
ADDED
@@ -0,0 +1,16 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
_base_ = './lerf_default.py'
|
2 |
+
|
3 |
+
expname = 'dcvgo_donuts'
|
4 |
+
|
5 |
+
data = dict(
|
6 |
+
datadir='./data/lerf_data/donuts',
|
7 |
+
factor=2, # 497 * 369
|
8 |
+
# factor=4,
|
9 |
+
movie_render_kwargs=dict(
|
10 |
+
shift_x=-0.2,
|
11 |
+
shift_y=0.2,
|
12 |
+
shift_z=0.1,
|
13 |
+
scale_r=1.3,
|
14 |
+
pitch_deg=60,
|
15 |
+
),
|
16 |
+
)
|
configs/lerf/dozer_nerfgun_waldo.py
ADDED
@@ -0,0 +1,16 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
_base_ = './lerf_default.py'
|
2 |
+
|
3 |
+
expname = 'dcvgo_dozer_nerfgun_waldo'
|
4 |
+
|
5 |
+
data = dict(
|
6 |
+
datadir='./data/lerf_data/dozer_nerfgun_waldo',
|
7 |
+
factor=2, # 497 * 369
|
8 |
+
# factor=4,
|
9 |
+
# movie_render_kwargs=dict(
|
10 |
+
# shift_x=0.0, # positive right
|
11 |
+
# shift_y=-0.3, # negative down
|
12 |
+
# shift_z=0,
|
13 |
+
# scale_r=0.2,
|
14 |
+
# pitch_deg=-40, # negative look downward
|
15 |
+
# ),
|
16 |
+
)
|
configs/lerf/espresso.py
ADDED
@@ -0,0 +1,16 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
_base_ = './lerf_default.py'
|
2 |
+
|
3 |
+
expname = 'dcvgo_espresso'
|
4 |
+
|
5 |
+
data = dict(
|
6 |
+
datadir='./data/lerf_data/espresso',
|
7 |
+
factor=2, # 497 * 369
|
8 |
+
# factor=4,
|
9 |
+
# movie_render_kwargs=dict(
|
10 |
+
# shift_x=0.0, # positive right
|
11 |
+
# shift_y=-0.3, # negative down
|
12 |
+
# shift_z=0,
|
13 |
+
# scale_r=0.2,
|
14 |
+
# pitch_deg=-40, # negative look downward
|
15 |
+
# ),
|
16 |
+
)
|