Our3D / lib /dmpigo.py
yansong1616's picture
Upload 384 files
b177539 verified
raw
history blame
15.7 kB
import os
import time
import functools
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch import Tensor
from einops import rearrange
from torch_scatter import scatter_add, segment_coo
from . import grid
from .dvgo import Raw2Alpha, Alphas2Weights, render_utils_cuda
'''Model'''
class DirectMPIGO(torch.nn.Module):
def __init__(self, xyz_min, xyz_max,
num_voxels=0, mpi_depth=0,
mask_cache_path=None, mask_cache_thres=1e-3, mask_cache_world_size=None,
fast_color_thres=0,
density_type='DenseGrid', k0_type='DenseGrid',
density_config={}, k0_config={},
rgbnet_dim=0,
rgbnet_depth=3, rgbnet_width=128,
viewbase_pe=0,
**kwargs):
super(DirectMPIGO, self).__init__()
self.register_buffer('xyz_min', torch.Tensor(xyz_min))
self.register_buffer('xyz_max', torch.Tensor(xyz_max))
self.fast_color_thres = fast_color_thres
# determine init grid resolution
self._set_grid_resolution(num_voxels, mpi_depth)
# init density voxel grid
self.density_type = density_type
self.density_config = density_config
self.density = grid.create_grid(
density_type, channels=1, world_size=self.world_size,
xyz_min=self.xyz_min, xyz_max=self.xyz_max,
config=self.density_config)
# init density bias so that the initial contribution (the alpha values)
# of each query points on a ray is equal
self.act_shift = grid.DenseGrid(
channels=1, world_size=[1,1,mpi_depth],
xyz_min=xyz_min, xyz_max=xyz_max)
self.act_shift.grid.requires_grad = False
with torch.no_grad():
g = np.full([mpi_depth], 1./mpi_depth - 1e-6)
p = [1-g[0]]
for i in range(1, len(g)):
p.append((1-g[:i+1].sum())/(1-g[:i].sum()))
for i in range(len(p)):
self.act_shift.grid[..., i].fill_(np.log(p[i] ** (-1/self.voxel_size_ratio) - 1))
# init color representation
# feature voxel grid + shallow MLP (fine stage)
self.rgbnet_kwargs = {
'rgbnet_dim': rgbnet_dim,
'rgbnet_depth': rgbnet_depth, 'rgbnet_width': rgbnet_width,
'viewbase_pe': viewbase_pe,
}
self.k0_type = k0_type
self.k0_config = k0_config
if rgbnet_dim <= 0:
# color voxel grid (coarse stage)
self.k0_dim = 3
self.k0 = grid.create_grid(
k0_type, channels=self.k0_dim, world_size=self.world_size,
xyz_min=self.xyz_min, xyz_max=self.xyz_max,
config=self.k0_config)
self.rgbnet = None
else:
self.k0_dim = rgbnet_dim
self.k0 = grid.create_grid(
k0_type, channels=self.k0_dim, world_size=self.world_size,
xyz_min=self.xyz_min, xyz_max=self.xyz_max,
config=self.k0_config)
self.register_buffer('viewfreq', torch.FloatTensor([(2**i) for i in range(viewbase_pe)]))
dim0 = (3+3*viewbase_pe*2) + self.k0_dim
self.rgbnet = nn.Sequential(
nn.Linear(dim0, rgbnet_width), nn.ReLU(inplace=True),
*[
nn.Sequential(nn.Linear(rgbnet_width, rgbnet_width), nn.ReLU(inplace=True))
for _ in range(rgbnet_depth-2)
],
nn.Linear(rgbnet_width, 3),
)
nn.init.constant_(self.rgbnet[-1].bias, 0)
print('dmpigo: densitye grid', self.density)
print('dmpigo: feature grid', self.k0)
print('dmpigo: mlp', self.rgbnet)
# Using the coarse geometry if provided (used to determine known free space and unknown space)
# Re-implement as occupancy grid (2021/1/31)
self.mask_cache_path = mask_cache_path
self.mask_cache_thres = mask_cache_thres
if mask_cache_world_size is None:
mask_cache_world_size = self.world_size
if mask_cache_path is not None and mask_cache_path:
mask_cache = grid.MaskGrid(
path=mask_cache_path,
mask_cache_thres=mask_cache_thres).to(self.xyz_min.device)
self_grid_xyz = torch.stack(torch.meshgrid(
torch.linspace(self.xyz_min[0], self.xyz_max[0], mask_cache_world_size[0]),
torch.linspace(self.xyz_min[1], self.xyz_max[1], mask_cache_world_size[1]),
torch.linspace(self.xyz_min[2], self.xyz_max[2], mask_cache_world_size[2]),
), -1)
mask = mask_cache(self_grid_xyz)
else:
mask = torch.ones(list(mask_cache_world_size), dtype=torch.bool)
self.mask_cache = grid.MaskGrid(
path=None, mask=mask,
xyz_min=self.xyz_min, xyz_max=self.xyz_max)
def _set_grid_resolution(self, num_voxels, mpi_depth):
# Determine grid resolution
self.num_voxels = num_voxels
self.mpi_depth = mpi_depth
r = (num_voxels / self.mpi_depth / (self.xyz_max - self.xyz_min)[:2].prod()).sqrt()
self.world_size = torch.zeros(3, dtype=torch.long)
self.world_size[:2] = (self.xyz_max - self.xyz_min)[:2] * r
self.world_size[2] = self.mpi_depth
self.voxel_size_ratio = 256. / mpi_depth
print('dmpigo: world_size ', self.world_size)
print('dmpigo: voxel_size_ratio', self.voxel_size_ratio)
def get_kwargs(self):
return {
'xyz_min': self.xyz_min.cpu().numpy(),
'xyz_max': self.xyz_max.cpu().numpy(),
'num_voxels': self.num_voxels,
'mpi_depth': self.mpi_depth,
'voxel_size_ratio': self.voxel_size_ratio,
'mask_cache_path': self.mask_cache_path,
'mask_cache_thres': self.mask_cache_thres,
'mask_cache_world_size': list(self.mask_cache.mask.shape),
'fast_color_thres': self.fast_color_thres,
'density_type': self.density_type,
'k0_type': self.k0_type,
'density_config': self.density_config,
'k0_config': self.k0_config,
**self.rgbnet_kwargs,
}
@torch.no_grad()
def scale_volume_grid(self, num_voxels, mpi_depth):
print('dmpigo: scale_volume_grid start')
ori_world_size = self.world_size
self._set_grid_resolution(num_voxels, mpi_depth)
print('dmpigo: scale_volume_grid scale world_size from', ori_world_size.tolist(), 'to', self.world_size.tolist())
self.density.scale_volume_grid(self.world_size)
self.k0.scale_volume_grid(self.world_size)
if np.prod(self.world_size.tolist()) <= 256**3:
self_grid_xyz = torch.stack(torch.meshgrid(
torch.linspace(self.xyz_min[0], self.xyz_max[0], self.world_size[0]),
torch.linspace(self.xyz_min[1], self.xyz_max[1], self.world_size[1]),
torch.linspace(self.xyz_min[2], self.xyz_max[2], self.world_size[2]),
), -1)
dens = self.density.get_dense_grid() + self.act_shift.grid
self_alpha = F.max_pool3d(self.activate_density(dens), kernel_size=3, padding=1, stride=1)[0,0]
self.mask_cache = grid.MaskGrid(
path=None, mask=self.mask_cache(self_grid_xyz) & (self_alpha>self.fast_color_thres),
xyz_min=self.xyz_min, xyz_max=self.xyz_max)
print('dmpigo: scale_volume_grid finish')
@torch.no_grad()
def update_occupancy_cache(self):
ori_p = self.mask_cache.mask.float().mean().item()
cache_grid_xyz = torch.stack(torch.meshgrid(
torch.linspace(self.xyz_min[0], self.xyz_max[0], self.mask_cache.mask.shape[0]),
torch.linspace(self.xyz_min[1], self.xyz_max[1], self.mask_cache.mask.shape[1]),
torch.linspace(self.xyz_min[2], self.xyz_max[2], self.mask_cache.mask.shape[2]),
), -1)
cache_grid_density = self.density(cache_grid_xyz)[None,None]
cache_grid_alpha = self.activate_density(cache_grid_density)
cache_grid_alpha = F.max_pool3d(cache_grid_alpha, kernel_size=3, padding=1, stride=1)[0,0]
self.mask_cache.mask &= (cache_grid_alpha > self.fast_color_thres)
new_p = self.mask_cache.mask.float().mean().item()
print(f'dmpigo: update mask_cache {ori_p:.4f} => {new_p:.4f}')
def update_occupancy_cache_lt_nviews(self, rays_o_tr, rays_d_tr, imsz, render_kwargs, maskout_lt_nviews):
print('dmpigo: update mask_cache lt_nviews start')
eps_time = time.time()
count = torch.zeros_like(self.density.get_dense_grid()).long()
device = count.device
for rays_o_, rays_d_ in zip(rays_o_tr.split(imsz), rays_d_tr.split(imsz)):
ones = grid.DenseGrid(1, self.world_size, self.xyz_min, self.xyz_max)
for rays_o, rays_d in zip(rays_o_.split(8192), rays_d_.split(8192)):
ray_pts, ray_id, step_id, N_samples = self.sample_ray(
rays_o=rays_o.to(device), rays_d=rays_d.to(device), **render_kwargs)
ones(ray_pts).sum().backward()
count.data += (ones.grid.grad > 1)
ori_p = self.mask_cache.mask.float().mean().item()
self.mask_cache.mask &= (count >= maskout_lt_nviews)[0,0]
new_p = self.mask_cache.mask.float().mean().item()
print(f'dmpigo: update mask_cache {ori_p:.4f} => {new_p:.4f}')
torch.cuda.empty_cache()
eps_time = time.time() - eps_time
print(f'dmpigo: update mask_cache lt_nviews finish (eps time:', eps_time, 'sec)')
def density_total_variation_add_grad(self, weight, dense_mode):
wxy = weight * self.world_size[:2].max() / 128
wz = weight * self.mpi_depth / 128
self.density.total_variation_add_grad(wxy, wxy, wz, dense_mode)
def k0_total_variation_add_grad(self, weight, dense_mode):
wxy = weight * self.world_size[:2].max() / 128
wz = weight * self.mpi_depth / 128
self.k0.total_variation_add_grad(wxy, wxy, wz, dense_mode)
def activate_density(self, density, interval=None):
interval = interval if interval is not None else self.voxel_size_ratio
shape = density.shape
return Raw2Alpha.apply(density.flatten(), 0, interval).reshape(shape)
def sample_ray(self, rays_o, rays_d, near, far, stepsize, **render_kwargs):
'''Sample query points on rays.
All the output points are sorted from near to far.
Input:
rays_o, rayd_d: both in [N, 3] indicating ray configurations.
near, far: the near and far distance of the rays.
stepsize: the number of voxels of each sample step.
Output:
ray_pts: [M, 3] storing all the sampled points.
ray_id: [M] the index of the ray of each point.
step_id: [M] the i'th step on a ray of each point.
'''
assert near==0 and far==1
rays_o = rays_o.contiguous()
rays_d = rays_d.contiguous()
N_samples = int((self.mpi_depth-1)/stepsize) + 1
ray_pts, mask_outbbox = render_utils_cuda.sample_ndc_pts_on_rays(
rays_o, rays_d, self.xyz_min, self.xyz_max, N_samples)
mask_inbbox = ~mask_outbbox
ray_pts = ray_pts[mask_inbbox]
if mask_inbbox.all():
ray_id, step_id = create_full_step_id(mask_inbbox.shape)
else:
ray_id = torch.arange(mask_inbbox.shape[0]).view(-1,1).expand_as(mask_inbbox)[mask_inbbox]
step_id = torch.arange(mask_inbbox.shape[1]).view(1,-1).expand_as(mask_inbbox)[mask_inbbox]
return ray_pts, ray_id, step_id, N_samples
def forward(self, rays_o, rays_d, viewdirs, global_step=None, **render_kwargs):
'''Volume rendering
@rays_o: [N, 3] the starting point of the N shooting rays.
@rays_d: [N, 3] the shooting direction of the N rays.
@viewdirs: [N, 3] viewing direction to compute positional embedding for MLP.
'''
assert len(rays_o.shape)==2 and rays_o.shape[-1]==3, 'Only suuport point queries in [N, 3] format'
ret_dict = {}
N = len(rays_o)
# sample points on rays
ray_pts, ray_id, step_id, N_samples = self.sample_ray(
rays_o=rays_o, rays_d=rays_d, **render_kwargs)
interval = render_kwargs['stepsize'] * self.voxel_size_ratio
# skip known free space
if self.mask_cache is not None:
mask = self.mask_cache(ray_pts)
ray_pts = ray_pts[mask]
ray_id = ray_id[mask]
step_id = step_id[mask]
# query for alpha w/ post-activation
density = self.density(ray_pts) + self.act_shift(ray_pts)
alpha = self.activate_density(density, interval)
if self.fast_color_thres > 0:
mask = (alpha > self.fast_color_thres)
ray_pts = ray_pts[mask]
ray_id = ray_id[mask]
step_id = step_id[mask]
alpha = alpha[mask]
# compute accumulated transmittance
weights, alphainv_last = Alphas2Weights.apply(alpha, ray_id, N)
if self.fast_color_thres > 0:
mask = (weights > self.fast_color_thres)
ray_pts = ray_pts[mask]
ray_id = ray_id[mask]
step_id = step_id[mask]
alpha = alpha[mask]
weights = weights[mask]
# query for color
vox_emb = self.k0(ray_pts)
if self.rgbnet is None:
# no view-depend effect
rgb = torch.sigmoid(vox_emb)
else:
# view-dependent color emission
viewdirs_emb = (viewdirs.unsqueeze(-1) * self.viewfreq).flatten(-2)
viewdirs_emb = torch.cat([viewdirs, viewdirs_emb.sin(), viewdirs_emb.cos()], -1)
viewdirs_emb = viewdirs_emb[ray_id]
rgb_feat = torch.cat([vox_emb, viewdirs_emb], -1)
rgb_logit = self.rgbnet(rgb_feat)
rgb = torch.sigmoid(rgb_logit)
# Ray marching
rgb_marched = segment_coo(
src=(weights.unsqueeze(-1) * rgb),
index=ray_id,
out=torch.zeros([N, 3]),
reduce='sum')
if render_kwargs.get('rand_bkgd', False) and global_step is not None:
rgb_marched += (alphainv_last.unsqueeze(-1) * torch.rand_like(rgb_marched))
else:
rgb_marched += (alphainv_last.unsqueeze(-1) * render_kwargs['bg'])
s = (step_id+0.5) / N_samples
ret_dict.update({
'alphainv_last': alphainv_last,
'weights': weights,
'rgb_marched': rgb_marched,
'raw_alpha': alpha,
'raw_rgb': rgb,
'ray_id': ray_id,
'n_max': N_samples,
's': s,
})
if render_kwargs.get('render_depth', False):
with torch.no_grad():
depth = segment_coo(
src=(weights * s),
index=ray_id,
out=torch.zeros([N]),
reduce='sum')
ret_dict.update({'depth': depth})
return ret_dict
@functools.lru_cache(maxsize=128)
def create_full_step_id(shape):
ray_id = torch.arange(shape[0]).view(-1,1).expand(shape).flatten()
step_id = torch.arange(shape[1]).view(1,-1).expand(shape).flatten()
return ray_id, step_id