Spaces:
Paused
Paused
File size: 15,654 Bytes
b177539 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 |
import os
import time
import functools
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch import Tensor
from einops import rearrange
from torch_scatter import scatter_add, segment_coo
from . import grid
from .dvgo import Raw2Alpha, Alphas2Weights, render_utils_cuda
'''Model'''
class DirectMPIGO(torch.nn.Module):
def __init__(self, xyz_min, xyz_max,
num_voxels=0, mpi_depth=0,
mask_cache_path=None, mask_cache_thres=1e-3, mask_cache_world_size=None,
fast_color_thres=0,
density_type='DenseGrid', k0_type='DenseGrid',
density_config={}, k0_config={},
rgbnet_dim=0,
rgbnet_depth=3, rgbnet_width=128,
viewbase_pe=0,
**kwargs):
super(DirectMPIGO, self).__init__()
self.register_buffer('xyz_min', torch.Tensor(xyz_min))
self.register_buffer('xyz_max', torch.Tensor(xyz_max))
self.fast_color_thres = fast_color_thres
# determine init grid resolution
self._set_grid_resolution(num_voxels, mpi_depth)
# init density voxel grid
self.density_type = density_type
self.density_config = density_config
self.density = grid.create_grid(
density_type, channels=1, world_size=self.world_size,
xyz_min=self.xyz_min, xyz_max=self.xyz_max,
config=self.density_config)
# init density bias so that the initial contribution (the alpha values)
# of each query points on a ray is equal
self.act_shift = grid.DenseGrid(
channels=1, world_size=[1,1,mpi_depth],
xyz_min=xyz_min, xyz_max=xyz_max)
self.act_shift.grid.requires_grad = False
with torch.no_grad():
g = np.full([mpi_depth], 1./mpi_depth - 1e-6)
p = [1-g[0]]
for i in range(1, len(g)):
p.append((1-g[:i+1].sum())/(1-g[:i].sum()))
for i in range(len(p)):
self.act_shift.grid[..., i].fill_(np.log(p[i] ** (-1/self.voxel_size_ratio) - 1))
# init color representation
# feature voxel grid + shallow MLP (fine stage)
self.rgbnet_kwargs = {
'rgbnet_dim': rgbnet_dim,
'rgbnet_depth': rgbnet_depth, 'rgbnet_width': rgbnet_width,
'viewbase_pe': viewbase_pe,
}
self.k0_type = k0_type
self.k0_config = k0_config
if rgbnet_dim <= 0:
# color voxel grid (coarse stage)
self.k0_dim = 3
self.k0 = grid.create_grid(
k0_type, channels=self.k0_dim, world_size=self.world_size,
xyz_min=self.xyz_min, xyz_max=self.xyz_max,
config=self.k0_config)
self.rgbnet = None
else:
self.k0_dim = rgbnet_dim
self.k0 = grid.create_grid(
k0_type, channels=self.k0_dim, world_size=self.world_size,
xyz_min=self.xyz_min, xyz_max=self.xyz_max,
config=self.k0_config)
self.register_buffer('viewfreq', torch.FloatTensor([(2**i) for i in range(viewbase_pe)]))
dim0 = (3+3*viewbase_pe*2) + self.k0_dim
self.rgbnet = nn.Sequential(
nn.Linear(dim0, rgbnet_width), nn.ReLU(inplace=True),
*[
nn.Sequential(nn.Linear(rgbnet_width, rgbnet_width), nn.ReLU(inplace=True))
for _ in range(rgbnet_depth-2)
],
nn.Linear(rgbnet_width, 3),
)
nn.init.constant_(self.rgbnet[-1].bias, 0)
print('dmpigo: densitye grid', self.density)
print('dmpigo: feature grid', self.k0)
print('dmpigo: mlp', self.rgbnet)
# Using the coarse geometry if provided (used to determine known free space and unknown space)
# Re-implement as occupancy grid (2021/1/31)
self.mask_cache_path = mask_cache_path
self.mask_cache_thres = mask_cache_thres
if mask_cache_world_size is None:
mask_cache_world_size = self.world_size
if mask_cache_path is not None and mask_cache_path:
mask_cache = grid.MaskGrid(
path=mask_cache_path,
mask_cache_thres=mask_cache_thres).to(self.xyz_min.device)
self_grid_xyz = torch.stack(torch.meshgrid(
torch.linspace(self.xyz_min[0], self.xyz_max[0], mask_cache_world_size[0]),
torch.linspace(self.xyz_min[1], self.xyz_max[1], mask_cache_world_size[1]),
torch.linspace(self.xyz_min[2], self.xyz_max[2], mask_cache_world_size[2]),
), -1)
mask = mask_cache(self_grid_xyz)
else:
mask = torch.ones(list(mask_cache_world_size), dtype=torch.bool)
self.mask_cache = grid.MaskGrid(
path=None, mask=mask,
xyz_min=self.xyz_min, xyz_max=self.xyz_max)
def _set_grid_resolution(self, num_voxels, mpi_depth):
# Determine grid resolution
self.num_voxels = num_voxels
self.mpi_depth = mpi_depth
r = (num_voxels / self.mpi_depth / (self.xyz_max - self.xyz_min)[:2].prod()).sqrt()
self.world_size = torch.zeros(3, dtype=torch.long)
self.world_size[:2] = (self.xyz_max - self.xyz_min)[:2] * r
self.world_size[2] = self.mpi_depth
self.voxel_size_ratio = 256. / mpi_depth
print('dmpigo: world_size ', self.world_size)
print('dmpigo: voxel_size_ratio', self.voxel_size_ratio)
def get_kwargs(self):
return {
'xyz_min': self.xyz_min.cpu().numpy(),
'xyz_max': self.xyz_max.cpu().numpy(),
'num_voxels': self.num_voxels,
'mpi_depth': self.mpi_depth,
'voxel_size_ratio': self.voxel_size_ratio,
'mask_cache_path': self.mask_cache_path,
'mask_cache_thres': self.mask_cache_thres,
'mask_cache_world_size': list(self.mask_cache.mask.shape),
'fast_color_thres': self.fast_color_thres,
'density_type': self.density_type,
'k0_type': self.k0_type,
'density_config': self.density_config,
'k0_config': self.k0_config,
**self.rgbnet_kwargs,
}
@torch.no_grad()
def scale_volume_grid(self, num_voxels, mpi_depth):
print('dmpigo: scale_volume_grid start')
ori_world_size = self.world_size
self._set_grid_resolution(num_voxels, mpi_depth)
print('dmpigo: scale_volume_grid scale world_size from', ori_world_size.tolist(), 'to', self.world_size.tolist())
self.density.scale_volume_grid(self.world_size)
self.k0.scale_volume_grid(self.world_size)
if np.prod(self.world_size.tolist()) <= 256**3:
self_grid_xyz = torch.stack(torch.meshgrid(
torch.linspace(self.xyz_min[0], self.xyz_max[0], self.world_size[0]),
torch.linspace(self.xyz_min[1], self.xyz_max[1], self.world_size[1]),
torch.linspace(self.xyz_min[2], self.xyz_max[2], self.world_size[2]),
), -1)
dens = self.density.get_dense_grid() + self.act_shift.grid
self_alpha = F.max_pool3d(self.activate_density(dens), kernel_size=3, padding=1, stride=1)[0,0]
self.mask_cache = grid.MaskGrid(
path=None, mask=self.mask_cache(self_grid_xyz) & (self_alpha>self.fast_color_thres),
xyz_min=self.xyz_min, xyz_max=self.xyz_max)
print('dmpigo: scale_volume_grid finish')
@torch.no_grad()
def update_occupancy_cache(self):
ori_p = self.mask_cache.mask.float().mean().item()
cache_grid_xyz = torch.stack(torch.meshgrid(
torch.linspace(self.xyz_min[0], self.xyz_max[0], self.mask_cache.mask.shape[0]),
torch.linspace(self.xyz_min[1], self.xyz_max[1], self.mask_cache.mask.shape[1]),
torch.linspace(self.xyz_min[2], self.xyz_max[2], self.mask_cache.mask.shape[2]),
), -1)
cache_grid_density = self.density(cache_grid_xyz)[None,None]
cache_grid_alpha = self.activate_density(cache_grid_density)
cache_grid_alpha = F.max_pool3d(cache_grid_alpha, kernel_size=3, padding=1, stride=1)[0,0]
self.mask_cache.mask &= (cache_grid_alpha > self.fast_color_thres)
new_p = self.mask_cache.mask.float().mean().item()
print(f'dmpigo: update mask_cache {ori_p:.4f} => {new_p:.4f}')
def update_occupancy_cache_lt_nviews(self, rays_o_tr, rays_d_tr, imsz, render_kwargs, maskout_lt_nviews):
print('dmpigo: update mask_cache lt_nviews start')
eps_time = time.time()
count = torch.zeros_like(self.density.get_dense_grid()).long()
device = count.device
for rays_o_, rays_d_ in zip(rays_o_tr.split(imsz), rays_d_tr.split(imsz)):
ones = grid.DenseGrid(1, self.world_size, self.xyz_min, self.xyz_max)
for rays_o, rays_d in zip(rays_o_.split(8192), rays_d_.split(8192)):
ray_pts, ray_id, step_id, N_samples = self.sample_ray(
rays_o=rays_o.to(device), rays_d=rays_d.to(device), **render_kwargs)
ones(ray_pts).sum().backward()
count.data += (ones.grid.grad > 1)
ori_p = self.mask_cache.mask.float().mean().item()
self.mask_cache.mask &= (count >= maskout_lt_nviews)[0,0]
new_p = self.mask_cache.mask.float().mean().item()
print(f'dmpigo: update mask_cache {ori_p:.4f} => {new_p:.4f}')
torch.cuda.empty_cache()
eps_time = time.time() - eps_time
print(f'dmpigo: update mask_cache lt_nviews finish (eps time:', eps_time, 'sec)')
def density_total_variation_add_grad(self, weight, dense_mode):
wxy = weight * self.world_size[:2].max() / 128
wz = weight * self.mpi_depth / 128
self.density.total_variation_add_grad(wxy, wxy, wz, dense_mode)
def k0_total_variation_add_grad(self, weight, dense_mode):
wxy = weight * self.world_size[:2].max() / 128
wz = weight * self.mpi_depth / 128
self.k0.total_variation_add_grad(wxy, wxy, wz, dense_mode)
def activate_density(self, density, interval=None):
interval = interval if interval is not None else self.voxel_size_ratio
shape = density.shape
return Raw2Alpha.apply(density.flatten(), 0, interval).reshape(shape)
def sample_ray(self, rays_o, rays_d, near, far, stepsize, **render_kwargs):
'''Sample query points on rays.
All the output points are sorted from near to far.
Input:
rays_o, rayd_d: both in [N, 3] indicating ray configurations.
near, far: the near and far distance of the rays.
stepsize: the number of voxels of each sample step.
Output:
ray_pts: [M, 3] storing all the sampled points.
ray_id: [M] the index of the ray of each point.
step_id: [M] the i'th step on a ray of each point.
'''
assert near==0 and far==1
rays_o = rays_o.contiguous()
rays_d = rays_d.contiguous()
N_samples = int((self.mpi_depth-1)/stepsize) + 1
ray_pts, mask_outbbox = render_utils_cuda.sample_ndc_pts_on_rays(
rays_o, rays_d, self.xyz_min, self.xyz_max, N_samples)
mask_inbbox = ~mask_outbbox
ray_pts = ray_pts[mask_inbbox]
if mask_inbbox.all():
ray_id, step_id = create_full_step_id(mask_inbbox.shape)
else:
ray_id = torch.arange(mask_inbbox.shape[0]).view(-1,1).expand_as(mask_inbbox)[mask_inbbox]
step_id = torch.arange(mask_inbbox.shape[1]).view(1,-1).expand_as(mask_inbbox)[mask_inbbox]
return ray_pts, ray_id, step_id, N_samples
def forward(self, rays_o, rays_d, viewdirs, global_step=None, **render_kwargs):
'''Volume rendering
@rays_o: [N, 3] the starting point of the N shooting rays.
@rays_d: [N, 3] the shooting direction of the N rays.
@viewdirs: [N, 3] viewing direction to compute positional embedding for MLP.
'''
assert len(rays_o.shape)==2 and rays_o.shape[-1]==3, 'Only suuport point queries in [N, 3] format'
ret_dict = {}
N = len(rays_o)
# sample points on rays
ray_pts, ray_id, step_id, N_samples = self.sample_ray(
rays_o=rays_o, rays_d=rays_d, **render_kwargs)
interval = render_kwargs['stepsize'] * self.voxel_size_ratio
# skip known free space
if self.mask_cache is not None:
mask = self.mask_cache(ray_pts)
ray_pts = ray_pts[mask]
ray_id = ray_id[mask]
step_id = step_id[mask]
# query for alpha w/ post-activation
density = self.density(ray_pts) + self.act_shift(ray_pts)
alpha = self.activate_density(density, interval)
if self.fast_color_thres > 0:
mask = (alpha > self.fast_color_thres)
ray_pts = ray_pts[mask]
ray_id = ray_id[mask]
step_id = step_id[mask]
alpha = alpha[mask]
# compute accumulated transmittance
weights, alphainv_last = Alphas2Weights.apply(alpha, ray_id, N)
if self.fast_color_thres > 0:
mask = (weights > self.fast_color_thres)
ray_pts = ray_pts[mask]
ray_id = ray_id[mask]
step_id = step_id[mask]
alpha = alpha[mask]
weights = weights[mask]
# query for color
vox_emb = self.k0(ray_pts)
if self.rgbnet is None:
# no view-depend effect
rgb = torch.sigmoid(vox_emb)
else:
# view-dependent color emission
viewdirs_emb = (viewdirs.unsqueeze(-1) * self.viewfreq).flatten(-2)
viewdirs_emb = torch.cat([viewdirs, viewdirs_emb.sin(), viewdirs_emb.cos()], -1)
viewdirs_emb = viewdirs_emb[ray_id]
rgb_feat = torch.cat([vox_emb, viewdirs_emb], -1)
rgb_logit = self.rgbnet(rgb_feat)
rgb = torch.sigmoid(rgb_logit)
# Ray marching
rgb_marched = segment_coo(
src=(weights.unsqueeze(-1) * rgb),
index=ray_id,
out=torch.zeros([N, 3]),
reduce='sum')
if render_kwargs.get('rand_bkgd', False) and global_step is not None:
rgb_marched += (alphainv_last.unsqueeze(-1) * torch.rand_like(rgb_marched))
else:
rgb_marched += (alphainv_last.unsqueeze(-1) * render_kwargs['bg'])
s = (step_id+0.5) / N_samples
ret_dict.update({
'alphainv_last': alphainv_last,
'weights': weights,
'rgb_marched': rgb_marched,
'raw_alpha': alpha,
'raw_rgb': rgb,
'ray_id': ray_id,
'n_max': N_samples,
's': s,
})
if render_kwargs.get('render_depth', False):
with torch.no_grad():
depth = segment_coo(
src=(weights * s),
index=ray_id,
out=torch.zeros([N]),
reduce='sum')
ret_dict.update({'depth': depth})
return ret_dict
@functools.lru_cache(maxsize=128)
def create_full_step_id(shape):
ray_id = torch.arange(shape[0]).view(-1,1).expand(shape).flatten()
step_id = torch.arange(shape[1]).view(1,-1).expand(shape).flatten()
return ray_id, step_id
|