File size: 15,654 Bytes
b177539
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
import os
import time
import functools
import numpy as np

import torch
import torch.nn as nn
import torch.nn.functional as F
from torch import Tensor
from einops import rearrange
from torch_scatter import scatter_add, segment_coo

from . import grid
from .dvgo import Raw2Alpha, Alphas2Weights, render_utils_cuda


'''Model'''
class DirectMPIGO(torch.nn.Module):
    def __init__(self, xyz_min, xyz_max,
                 num_voxels=0, mpi_depth=0,
                 mask_cache_path=None, mask_cache_thres=1e-3, mask_cache_world_size=None,
                 fast_color_thres=0,
                 density_type='DenseGrid', k0_type='DenseGrid',
                 density_config={}, k0_config={},
                 rgbnet_dim=0,
                 rgbnet_depth=3, rgbnet_width=128,
                 viewbase_pe=0,
                 **kwargs):
        super(DirectMPIGO, self).__init__()
        self.register_buffer('xyz_min', torch.Tensor(xyz_min))
        self.register_buffer('xyz_max', torch.Tensor(xyz_max))
        self.fast_color_thres = fast_color_thres

        # determine init grid resolution
        self._set_grid_resolution(num_voxels, mpi_depth)

        # init density voxel grid
        self.density_type = density_type
        self.density_config = density_config
        self.density = grid.create_grid(
                density_type, channels=1, world_size=self.world_size,
                xyz_min=self.xyz_min, xyz_max=self.xyz_max,
                config=self.density_config)

        # init density bias so that the initial contribution (the alpha values)
        # of each query points on a ray is equal
        self.act_shift = grid.DenseGrid(
                channels=1, world_size=[1,1,mpi_depth],
                xyz_min=xyz_min, xyz_max=xyz_max)
        self.act_shift.grid.requires_grad = False
        with torch.no_grad():
            g = np.full([mpi_depth], 1./mpi_depth - 1e-6)
            p = [1-g[0]]
            for i in range(1, len(g)):
                p.append((1-g[:i+1].sum())/(1-g[:i].sum()))
            for i in range(len(p)):
                self.act_shift.grid[..., i].fill_(np.log(p[i] ** (-1/self.voxel_size_ratio) - 1))

        # init color representation
        # feature voxel grid + shallow MLP  (fine stage)
        self.rgbnet_kwargs = {
            'rgbnet_dim': rgbnet_dim,
            'rgbnet_depth': rgbnet_depth, 'rgbnet_width': rgbnet_width,
            'viewbase_pe': viewbase_pe,
        }
        self.k0_type = k0_type
        self.k0_config = k0_config
        if rgbnet_dim <= 0:
            # color voxel grid  (coarse stage)
            self.k0_dim = 3
            self.k0 = grid.create_grid(
                k0_type, channels=self.k0_dim, world_size=self.world_size,
                xyz_min=self.xyz_min, xyz_max=self.xyz_max,
                config=self.k0_config)
            self.rgbnet = None
        else:
            self.k0_dim = rgbnet_dim
            self.k0 = grid.create_grid(
                    k0_type, channels=self.k0_dim, world_size=self.world_size,
                    xyz_min=self.xyz_min, xyz_max=self.xyz_max,
                    config=self.k0_config)
            self.register_buffer('viewfreq', torch.FloatTensor([(2**i) for i in range(viewbase_pe)]))
            dim0 = (3+3*viewbase_pe*2) + self.k0_dim
            self.rgbnet = nn.Sequential(
                nn.Linear(dim0, rgbnet_width), nn.ReLU(inplace=True),
                *[
                    nn.Sequential(nn.Linear(rgbnet_width, rgbnet_width), nn.ReLU(inplace=True))
                    for _ in range(rgbnet_depth-2)
                ],
                nn.Linear(rgbnet_width, 3),
            )
            nn.init.constant_(self.rgbnet[-1].bias, 0)

        print('dmpigo: densitye grid', self.density)
        print('dmpigo: feature grid', self.k0)
        print('dmpigo: mlp', self.rgbnet)

        # Using the coarse geometry if provided (used to determine known free space and unknown space)
        # Re-implement as occupancy grid (2021/1/31)
        self.mask_cache_path = mask_cache_path
        self.mask_cache_thres = mask_cache_thres
        if mask_cache_world_size is None:
            mask_cache_world_size = self.world_size
        if mask_cache_path is not None and mask_cache_path:
            mask_cache = grid.MaskGrid(
                    path=mask_cache_path,
                    mask_cache_thres=mask_cache_thres).to(self.xyz_min.device)
            self_grid_xyz = torch.stack(torch.meshgrid(
                torch.linspace(self.xyz_min[0], self.xyz_max[0], mask_cache_world_size[0]),
                torch.linspace(self.xyz_min[1], self.xyz_max[1], mask_cache_world_size[1]),
                torch.linspace(self.xyz_min[2], self.xyz_max[2], mask_cache_world_size[2]),
            ), -1)
            mask = mask_cache(self_grid_xyz)
        else:
            mask = torch.ones(list(mask_cache_world_size), dtype=torch.bool)
        self.mask_cache = grid.MaskGrid(
                path=None, mask=mask,
                xyz_min=self.xyz_min, xyz_max=self.xyz_max)

    def _set_grid_resolution(self, num_voxels, mpi_depth):
        # Determine grid resolution
        self.num_voxels = num_voxels
        self.mpi_depth = mpi_depth
        r = (num_voxels / self.mpi_depth / (self.xyz_max - self.xyz_min)[:2].prod()).sqrt()
        self.world_size = torch.zeros(3, dtype=torch.long)
        self.world_size[:2] = (self.xyz_max - self.xyz_min)[:2] * r
        self.world_size[2] = self.mpi_depth
        self.voxel_size_ratio = 256. / mpi_depth
        print('dmpigo: world_size      ', self.world_size)
        print('dmpigo: voxel_size_ratio', self.voxel_size_ratio)

    def get_kwargs(self):
        return {
            'xyz_min': self.xyz_min.cpu().numpy(),
            'xyz_max': self.xyz_max.cpu().numpy(),
            'num_voxels': self.num_voxels,
            'mpi_depth': self.mpi_depth,
            'voxel_size_ratio': self.voxel_size_ratio,
            'mask_cache_path': self.mask_cache_path,
            'mask_cache_thres': self.mask_cache_thres,
            'mask_cache_world_size': list(self.mask_cache.mask.shape),
            'fast_color_thres': self.fast_color_thres,
            'density_type': self.density_type,
            'k0_type': self.k0_type,
            'density_config': self.density_config,
            'k0_config': self.k0_config,
            **self.rgbnet_kwargs,
        }

    @torch.no_grad()
    def scale_volume_grid(self, num_voxels, mpi_depth):
        print('dmpigo: scale_volume_grid start')
        ori_world_size = self.world_size
        self._set_grid_resolution(num_voxels, mpi_depth)
        print('dmpigo: scale_volume_grid scale world_size from', ori_world_size.tolist(), 'to', self.world_size.tolist())

        self.density.scale_volume_grid(self.world_size)
        self.k0.scale_volume_grid(self.world_size)

        if np.prod(self.world_size.tolist()) <= 256**3:
            self_grid_xyz = torch.stack(torch.meshgrid(
                torch.linspace(self.xyz_min[0], self.xyz_max[0], self.world_size[0]),
                torch.linspace(self.xyz_min[1], self.xyz_max[1], self.world_size[1]),
                torch.linspace(self.xyz_min[2], self.xyz_max[2], self.world_size[2]),
            ), -1)
            dens = self.density.get_dense_grid() + self.act_shift.grid
            self_alpha = F.max_pool3d(self.activate_density(dens), kernel_size=3, padding=1, stride=1)[0,0]
            self.mask_cache = grid.MaskGrid(
                    path=None, mask=self.mask_cache(self_grid_xyz) & (self_alpha>self.fast_color_thres),
                    xyz_min=self.xyz_min, xyz_max=self.xyz_max)

        print('dmpigo: scale_volume_grid finish')

    @torch.no_grad()
    def update_occupancy_cache(self):
        ori_p = self.mask_cache.mask.float().mean().item()
        cache_grid_xyz = torch.stack(torch.meshgrid(
            torch.linspace(self.xyz_min[0], self.xyz_max[0], self.mask_cache.mask.shape[0]),
            torch.linspace(self.xyz_min[1], self.xyz_max[1], self.mask_cache.mask.shape[1]),
            torch.linspace(self.xyz_min[2], self.xyz_max[2], self.mask_cache.mask.shape[2]),
        ), -1)
        cache_grid_density = self.density(cache_grid_xyz)[None,None]
        cache_grid_alpha = self.activate_density(cache_grid_density)
        cache_grid_alpha = F.max_pool3d(cache_grid_alpha, kernel_size=3, padding=1, stride=1)[0,0]
        self.mask_cache.mask &= (cache_grid_alpha > self.fast_color_thres)
        new_p = self.mask_cache.mask.float().mean().item()
        print(f'dmpigo: update mask_cache {ori_p:.4f} => {new_p:.4f}')

    def update_occupancy_cache_lt_nviews(self, rays_o_tr, rays_d_tr, imsz, render_kwargs, maskout_lt_nviews):
        print('dmpigo: update mask_cache lt_nviews start')
        eps_time = time.time()
        count = torch.zeros_like(self.density.get_dense_grid()).long()
        device = count.device
        for rays_o_, rays_d_ in zip(rays_o_tr.split(imsz), rays_d_tr.split(imsz)):
            ones = grid.DenseGrid(1, self.world_size, self.xyz_min, self.xyz_max)
            for rays_o, rays_d in zip(rays_o_.split(8192), rays_d_.split(8192)):
                ray_pts, ray_id, step_id, N_samples = self.sample_ray(
                        rays_o=rays_o.to(device), rays_d=rays_d.to(device), **render_kwargs)
                ones(ray_pts).sum().backward()
            count.data += (ones.grid.grad > 1)
        ori_p = self.mask_cache.mask.float().mean().item()
        self.mask_cache.mask &= (count >= maskout_lt_nviews)[0,0]
        new_p = self.mask_cache.mask.float().mean().item()
        print(f'dmpigo: update mask_cache {ori_p:.4f} => {new_p:.4f}')
        torch.cuda.empty_cache()
        eps_time = time.time() - eps_time
        print(f'dmpigo: update mask_cache lt_nviews finish (eps time:', eps_time, 'sec)')

    def density_total_variation_add_grad(self, weight, dense_mode):
        wxy = weight * self.world_size[:2].max() / 128
        wz = weight * self.mpi_depth / 128
        self.density.total_variation_add_grad(wxy, wxy, wz, dense_mode)

    def k0_total_variation_add_grad(self, weight, dense_mode):
        wxy = weight * self.world_size[:2].max() / 128
        wz = weight * self.mpi_depth / 128
        self.k0.total_variation_add_grad(wxy, wxy, wz, dense_mode)

    def activate_density(self, density, interval=None):
        interval = interval if interval is not None else self.voxel_size_ratio
        shape = density.shape
        return Raw2Alpha.apply(density.flatten(), 0, interval).reshape(shape)

    def sample_ray(self, rays_o, rays_d, near, far, stepsize, **render_kwargs):
        '''Sample query points on rays.
        All the output points are sorted from near to far.
        Input:
            rays_o, rayd_d:   both in [N, 3] indicating ray configurations.
            near, far:        the near and far distance of the rays.
            stepsize:         the number of voxels of each sample step.
        Output:
            ray_pts:          [M, 3] storing all the sampled points.
            ray_id:           [M]    the index of the ray of each point.
            step_id:          [M]    the i'th step on a ray of each point.
        '''
        assert near==0 and far==1
        rays_o = rays_o.contiguous()
        rays_d = rays_d.contiguous()
        N_samples = int((self.mpi_depth-1)/stepsize) + 1
        ray_pts, mask_outbbox = render_utils_cuda.sample_ndc_pts_on_rays(
            rays_o, rays_d, self.xyz_min, self.xyz_max, N_samples)
        mask_inbbox = ~mask_outbbox
        ray_pts = ray_pts[mask_inbbox]
        if mask_inbbox.all():
            ray_id, step_id = create_full_step_id(mask_inbbox.shape)
        else:
            ray_id = torch.arange(mask_inbbox.shape[0]).view(-1,1).expand_as(mask_inbbox)[mask_inbbox]
            step_id = torch.arange(mask_inbbox.shape[1]).view(1,-1).expand_as(mask_inbbox)[mask_inbbox]
        return ray_pts, ray_id, step_id, N_samples

    def forward(self, rays_o, rays_d, viewdirs, global_step=None, **render_kwargs):
        '''Volume rendering
        @rays_o:   [N, 3] the starting point of the N shooting rays.
        @rays_d:   [N, 3] the shooting direction of the N rays.
        @viewdirs: [N, 3] viewing direction to compute positional embedding for MLP.
        '''
        assert len(rays_o.shape)==2 and rays_o.shape[-1]==3, 'Only suuport point queries in [N, 3] format'

        ret_dict = {}
        N = len(rays_o)

        # sample points on rays
        ray_pts, ray_id, step_id, N_samples = self.sample_ray(
                rays_o=rays_o, rays_d=rays_d, **render_kwargs)
        interval = render_kwargs['stepsize'] * self.voxel_size_ratio

        # skip known free space
        if self.mask_cache is not None:
            mask = self.mask_cache(ray_pts)
            ray_pts = ray_pts[mask]
            ray_id = ray_id[mask]
            step_id = step_id[mask]

        # query for alpha w/ post-activation
        density = self.density(ray_pts) + self.act_shift(ray_pts)
        alpha = self.activate_density(density, interval)
        if self.fast_color_thres > 0:
            mask = (alpha > self.fast_color_thres)
            ray_pts = ray_pts[mask]
            ray_id = ray_id[mask]
            step_id = step_id[mask]
            alpha = alpha[mask]

        # compute accumulated transmittance
        weights, alphainv_last = Alphas2Weights.apply(alpha, ray_id, N)
        if self.fast_color_thres > 0:
            mask = (weights > self.fast_color_thres)
            ray_pts = ray_pts[mask]
            ray_id = ray_id[mask]
            step_id = step_id[mask]
            alpha = alpha[mask]
            weights = weights[mask]

        # query for color
        vox_emb = self.k0(ray_pts)

        if self.rgbnet is None:
            # no view-depend effect
            rgb = torch.sigmoid(vox_emb)
        else:
            # view-dependent color emission
            viewdirs_emb = (viewdirs.unsqueeze(-1) * self.viewfreq).flatten(-2)
            viewdirs_emb = torch.cat([viewdirs, viewdirs_emb.sin(), viewdirs_emb.cos()], -1)
            viewdirs_emb = viewdirs_emb[ray_id]
            rgb_feat = torch.cat([vox_emb, viewdirs_emb], -1)
            rgb_logit = self.rgbnet(rgb_feat)
            rgb = torch.sigmoid(rgb_logit)

        # Ray marching
        rgb_marched = segment_coo(
                src=(weights.unsqueeze(-1) * rgb),
                index=ray_id,
                out=torch.zeros([N, 3]),
                reduce='sum')
        if render_kwargs.get('rand_bkgd', False) and global_step is not None:
            rgb_marched += (alphainv_last.unsqueeze(-1) * torch.rand_like(rgb_marched))
        else:
            rgb_marched += (alphainv_last.unsqueeze(-1) * render_kwargs['bg'])
        s = (step_id+0.5) / N_samples
        ret_dict.update({
            'alphainv_last': alphainv_last,
            'weights': weights,
            'rgb_marched': rgb_marched,
            'raw_alpha': alpha,
            'raw_rgb': rgb,
            'ray_id': ray_id,
            'n_max': N_samples,
            's': s,
        })

        if render_kwargs.get('render_depth', False):
            with torch.no_grad():
                depth = segment_coo(
                        src=(weights * s),
                        index=ray_id,
                        out=torch.zeros([N]),
                        reduce='sum')
            ret_dict.update({'depth': depth})

        return ret_dict


@functools.lru_cache(maxsize=128)
def create_full_step_id(shape):
    ray_id = torch.arange(shape[0]).view(-1,1).expand(shape).flatten()
    step_id = torch.arange(shape[1]).view(1,-1).expand(shape).flatten()
    return ray_id, step_id