README / README.md
jyhong836's picture
Update README.md
be9d798
---
title: README
emoji: πŸ‡
colorFrom: pink
colorTo: indigo
sdk: static
pinned: false
---
# Visual Informatics Group @ University of Texas at Austin ([VITA-Group](https://vita-group.github.io/))
At VITA group, we have unusually broad, and forever-evolving research interests spanning from the theory to the
application aspects of machine learning (ML). Our current "research keywords" include, but are not limited to:
sparsity (from classical optimization to modern neural networks); efficient training, inference or transfer
(especially, of large foundation models); robustness and trustworthiness; learning to optimize (L2O);
generative AI; graph learning, and more.
## Compressed LLM Model Zone
**NOTE: All compressed LLMs are moved to a new repo at [compressed-llm](https://huggingface.co/compressed-llm).**
The models are prepared by [Visual Informatics Group @ University of Texas at Austin (VITA-group)](https://vita-group.github.io/). Credits to Ajay Jaiswal, Zhenyu Zhang, Zhangheng Li, Lu Yin, Shiwei Liu and Junyuan Hong.
License: [MIT License](https://opensource.org/license/mit/)
Setup environment
```shell
pip install torch==2.0.0+cu117 torchvision==0.15.1+cu117 torchaudio==2.0.1 --index-url https://download.pytorch.org/whl/cu117
pip install transformers==4.31.0
pip install accelerate
pip install auto-gptq # for gptq
```
How to use pruned models
```python
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
base_model = 'llama-2-7b'
comp_method = 'magnitude_unstructured'
comp_degree = 0.2
model_path = f'vita-group/{base_model}_{comp_method}'
model = AutoModelForCausalLM.from_pretrained(
model_path,
revision=f's{comp_degree}',
torch_dtype=torch.float16,
low_cpu_mem_usage=True,
device_map="auto"
)
tokenizer = AutoTokenizer.from_pretrained('meta-llama/Llama-2-7b-hf')
input_ids = tokenizer('Hello! I am a VITA-compressed-LLM chatbot!', return_tensors='pt').input_ids.cuda()
outputs = model.generate(input_ids, max_new_tokens=128)
print(tokenizer.decode(outputs[0]))
```
How to use wanda+gptq models
```python
from transformers import AutoTokenizer
from auto_gptq import AutoGPTQForCausalLM
model_path = 'vita-group/llama-2-7b_wanda_2_4_gptq_4bit_128g'
tokenizer_path = 'meta-llama/Llama-2-7b-hf'
model = AutoGPTQForCausalLM.from_quantized(
model_path,
# inject_fused_attention=False, # or
disable_exllama=True,
device_map='auto',
)
tokenizer = AutoTokenizer.from_pretrained(tokenizer_path, trust_remote_code=True)
input_ids = tokenizer('Hello! I am a VITA-compressed-LLM chatbot!', return_tensors='pt').input_ids.to('cuda')
outputs = model.generate(input_ids=input_ids, max_length=128)
tokenizer.decode(outputs[0])
```
How to use gptq models
```python
from transformers import AutoTokenizer
from auto_gptq import AutoGPTQForCausalLM
# model_path = 'vita-group/llama-2-7b_wanda_2_4_gptq_4bit_128g'
# tokenizer_path = 'meta-llama/Llama-2-7b-hf'
model_path = 'vita-group/vicuna-7b-v1.3_gptq'
tokenizer_path = 'lmsys/vicuna-7b-v1.3'
model = AutoGPTQForCausalLM.from_quantized(
model_path,
# inject_fused_attention=False, # or
disable_exllama=True,
device_map='auto',
revision='2bit_128g',
)
from transformers import AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained(tokenizer_path, trust_remote_code=True)
input_ids = tokenizer('Hello! I am a VITA-compressed-LLM chatbot!', return_tensors='pt').input_ids.to('cuda')
outputs = model.generate(input_ids=input_ids, max_length=128)
tokenizer.decode(outputs[0])
```
| | Base Model | Model Size | Compression Method | Compression Degree |
|---:|:-------------|:-------------|:------------------------------------------------------------------------------------------------|:--------------------------------------------------------------------------------------------------|
| 0 | Llama-2 | 13b | [magnitude_semistruct](https://huggingface.co/vita-group/llama-2-13b_magnitude_semistruct) | [0.5_2to4](https://huggingface.co/vita-group/llama-2-13b_magnitude_semistruct/tree/0.5_2to4) |
| 1 | Llama-2 | 13b | [sparsegpt_semistruct](https://huggingface.co/vita-group/llama-2-13b_sparsegpt_semistruct) | [0.5_2to4](https://huggingface.co/vita-group/llama-2-13b_sparsegpt_semistruct/tree/0.5_2to4) |
| 2 | Llama-2 | 7b | [magnitude_unstructured](https://huggingface.co/vita-group/llama-2-7b_magnitude_unstructured) | [s0.1](https://huggingface.co/vita-group/llama-2-7b_magnitude_unstructured/tree/s0.1) |
| 3 | Llama-2 | 7b | [magnitude_unstructured](https://huggingface.co/vita-group/llama-2-7b_magnitude_unstructured) | [s0.2](https://huggingface.co/vita-group/llama-2-7b_magnitude_unstructured/tree/s0.2) |
| 4 | Llama-2 | 7b | [magnitude_unstructured](https://huggingface.co/vita-group/llama-2-7b_magnitude_unstructured) | [s0.3](https://huggingface.co/vita-group/llama-2-7b_magnitude_unstructured/tree/s0.3) |
| 5 | Llama-2 | 7b | [magnitude_unstructured](https://huggingface.co/vita-group/llama-2-7b_magnitude_unstructured) | [s0.5](https://huggingface.co/vita-group/llama-2-7b_magnitude_unstructured/tree/s0.5) |
| 6 | Llama-2 | 7b | [magnitude_unstructured](https://huggingface.co/vita-group/llama-2-7b_magnitude_unstructured) | [s0.6](https://huggingface.co/vita-group/llama-2-7b_magnitude_unstructured/tree/s0.6) |
| 7 | Llama-2 | 7b | [sparsegpt_unstructured](https://huggingface.co/vita-group/llama-2-7b_sparsegpt_unstructured) | [s0.1](https://huggingface.co/vita-group/llama-2-7b_sparsegpt_unstructured/tree/s0.1) |
| 8 | Llama-2 | 7b | [sparsegpt_unstructured](https://huggingface.co/vita-group/llama-2-7b_sparsegpt_unstructured) | [s0.2](https://huggingface.co/vita-group/llama-2-7b_sparsegpt_unstructured/tree/s0.2) |
| 9 | Llama-2 | 7b | [sparsegpt_unstructured](https://huggingface.co/vita-group/llama-2-7b_sparsegpt_unstructured) | [s0.3](https://huggingface.co/vita-group/llama-2-7b_sparsegpt_unstructured/tree/s0.3) |
| 10 | Llama-2 | 7b | [sparsegpt_unstructured](https://huggingface.co/vita-group/llama-2-7b_sparsegpt_unstructured) | [s0.5](https://huggingface.co/vita-group/llama-2-7b_sparsegpt_unstructured/tree/s0.5) |
| 11 | Llama-2 | 7b | [sparsegpt_unstructured](https://huggingface.co/vita-group/llama-2-7b_sparsegpt_unstructured) | [s0.6](https://huggingface.co/vita-group/llama-2-7b_sparsegpt_unstructured/tree/s0.6) |
| 12 | Llama-2 | 7b | [wanda_gptq](https://huggingface.co/vita-group/llama-2-7b_wanda_2_4_gptq_4bit_128g) | 4bit_128g |
| 13 | Llama-2 | 7b | [wanda_unstructured](https://huggingface.co/vita-group/llama-2-7b_wanda_unstructured) | [s0.1](https://huggingface.co/vita-group/llama-2-7b_wanda_unstructured/tree/s0.1) |
| 14 | Llama-2 | 7b | [wanda_unstructured](https://huggingface.co/vita-group/llama-2-7b_wanda_unstructured) | [s0.2](https://huggingface.co/vita-group/llama-2-7b_wanda_unstructured/tree/s0.2) |
| 15 | Llama-2 | 7b | [wanda_unstructured](https://huggingface.co/vita-group/llama-2-7b_wanda_unstructured) | [s0.3](https://huggingface.co/vita-group/llama-2-7b_wanda_unstructured/tree/s0.3) |
| 16 | Llama-2 | 7b | [wanda_unstructured](https://huggingface.co/vita-group/llama-2-7b_wanda_unstructured) | [s0.5](https://huggingface.co/vita-group/llama-2-7b_wanda_unstructured/tree/s0.5) |
| 17 | Llama-2 | 7b | [wanda_unstructured](https://huggingface.co/vita-group/llama-2-7b_wanda_unstructured) | [s0.6](https://huggingface.co/vita-group/llama-2-7b_wanda_unstructured/tree/s0.6) |
| 18 | Llama-2-chat | 13b | [magnitude_semistruct](https://huggingface.co/vita-group/llama-2-13b-chat_magnitude_semistruct) | [0.5_2to4](https://huggingface.co/vita-group/llama-2-13b-chat_magnitude_semistruct/tree/0.5_2to4) |
| 19 | Llama-2-chat | 13b | [sparsegpt_semistruct](https://huggingface.co/vita-group/llama-2-13b-chat_sparsegpt_semistruct) | [0.5_2to4](https://huggingface.co/vita-group/llama-2-13b-chat_sparsegpt_semistruct/tree/0.5_2to4) |
| 20 | vicuna | 13b | [magnitude_semistruct](https://huggingface.co/vita-group/vicuna-13b-v1.3_magnitude_semistruct) | [0.5_2to4](https://huggingface.co/vita-group/vicuna-13b-v1.3_magnitude_semistruct/tree/0.5_2to4) |
| 21 | vicuna | 13b | [sparsegpt_semistruct](https://huggingface.co/vita-group/vicuna-13b-v1.3_sparsegpt_semistruct) | [0.5_2to4](https://huggingface.co/vita-group/vicuna-13b-v1.3_sparsegpt_semistruct/tree/0.5_2to4) |
| 22 | vicuna-v1.3 | 13b | [gptq](https://huggingface.co/vita-group/vicuna-13b-v1.3_gptq) | [10bit_128g](https://huggingface.co/vita-group/vicuna-13b-v1.3_gptq/tree/10bit_128g) |
| 23 | vicuna-v1.3 | 13b | [gptq](https://huggingface.co/vita-group/vicuna-13b-v1.3_gptq) | [12bit_128g](https://huggingface.co/vita-group/vicuna-13b-v1.3_gptq/tree/12bit_128g) |
| 24 | vicuna-v1.3 | 13b | [gptq](https://huggingface.co/vita-group/vicuna-13b-v1.3_gptq) | [14bit_128g](https://huggingface.co/vita-group/vicuna-13b-v1.3_gptq/tree/14bit_128g) |
| 25 | vicuna-v1.3 | 13b | [gptq](https://huggingface.co/vita-group/vicuna-13b-v1.3_gptq) | [2bit_128g](https://huggingface.co/vita-group/vicuna-13b-v1.3_gptq/tree/2bit_128g) |
| 26 | vicuna-v1.3 | 13b | [gptq](https://huggingface.co/vita-group/vicuna-13b-v1.3_gptq) | [3bit_128g](https://huggingface.co/vita-group/vicuna-13b-v1.3_gptq/tree/3bit_128g) |
| 27 | vicuna-v1.3 | 13b | [gptq](https://huggingface.co/vita-group/vicuna-13b-v1.3_gptq) | [4bit_128g](https://huggingface.co/vita-group/vicuna-13b-v1.3_gptq/tree/4bit_128g) |
| 29 | vicuna-v1.3 | 13b | [gptq](https://huggingface.co/vita-group/vicuna-13b-v1.3_gptq) | [8bit_128g](https://huggingface.co/vita-group/vicuna-13b-v1.3_gptq/tree/8bit_128g) |
| 30 | vicuna-v1.3 | 7b | [gptq](https://huggingface.co/vita-group/vicuna-7b-v1.3_gptq) | [10bit_128g](https://huggingface.co/vita-group/vicuna-7b-v1.3_gptq/tree/10bit_128g) |
| 31 | vicuna-v1.3 | 7b | [gptq](https://huggingface.co/vita-group/vicuna-7b-v1.3_gptq) | [12bit_128g](https://huggingface.co/vita-group/vicuna-7b-v1.3_gptq/tree/12bit_128g) |
| 32 | vicuna-v1.3 | 7b | [gptq](https://huggingface.co/vita-group/vicuna-7b-v1.3_gptq) | [14bit_128g](https://huggingface.co/vita-group/vicuna-7b-v1.3_gptq/tree/14bit_128g) |
| 33 | vicuna-v1.3 | 7b | [gptq](https://huggingface.co/vita-group/vicuna-7b-v1.3_gptq) | [2bit_128g](https://huggingface.co/vita-group/vicuna-7b-v1.3_gptq/tree/2bit_128g) |
| 34 | vicuna-v1.3 | 7b | [gptq](https://huggingface.co/vita-group/vicuna-7b-v1.3_gptq) | [3bit_128g](https://huggingface.co/vita-group/vicuna-7b-v1.3_gptq/tree/3bit_128g) |
| 35 | vicuna-v1.3 | 7b | [gptq](https://huggingface.co/vita-group/vicuna-7b-v1.3_gptq) | [4bit_128g](https://huggingface.co/vita-group/vicuna-7b-v1.3_gptq/tree/4bit_128g) |
| 37 | vicuna-v1.3 | 7b | [gptq](https://huggingface.co/vita-group/vicuna-7b-v1.3_gptq) | [8bit_128g](https://huggingface.co/vita-group/vicuna-7b-v1.3_gptq/tree/8bit_128g) |
## Citations
If you are using models in this hub, please consider citing our papers.
```bibtex
@article{jaiswal2023emergence,
title={The Emergence of Essential Sparsity in Large Pre-trained Models: The Weights that Matter},
author={Jaiswal, Ajay and Liu, Shiwei and Chen, Tianlong and Wang, Zhangyang},
journal={arXiv},
year={2023}
}
@article{jaiswal2023compressing,
title={Compressing LLMs: The Truth is Rarely Pure and Never Simple},
author={Ajay Jaiswal and Zhe Gan and Xianzhi Du and Bowen Zhang and Zhangyang Wang and Yinfei Yang},
year={2023},
journal={arXiv},
}
```
For any question, please contact [Junyuan Hong](mailto:[email protected]).