Spaces:
Running
Running
File size: 13,224 Bytes
1a84b7f 6314c97 1a84b7f 61850b4 61536cb 61850b4 61199cd be9d798 aa92c22 c7e1e04 61199cd 77b330e 3bdf225 77b330e 3bdf225 aa92c22 77b330e aa92c22 80bad79 3bdf225 ad0f0cc 80bad79 56954b0 80bad79 56954b0 80bad79 56954b0 aa92c22 56954b0 80bad79 12af674 aa92c22 12af674 aa92c22 12af674 aa92c22 12af674 aa92c22 61199cd 29b7dc1 a849bbb 83b7e94 bcf7afe 83b7e94 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 |
---
title: README
emoji: π
colorFrom: pink
colorTo: indigo
sdk: static
pinned: false
---
# Visual Informatics Group @ University of Texas at Austin ([VITA-Group](https://vita-group.github.io/))
At VITA group, we have unusually broad, and forever-evolving research interests spanning from the theory to the
application aspects of machine learning (ML). Our current "research keywords" include, but are not limited to:
sparsity (from classical optimization to modern neural networks); efficient training, inference or transfer
(especially, of large foundation models); robustness and trustworthiness; learning to optimize (L2O);
generative AI; graph learning, and more.
## Compressed LLM Model Zone
**NOTE: All compressed LLMs are moved to a new repo at [compressed-llm](https://huggingface.co/compressed-llm).**
The models are prepared by [Visual Informatics Group @ University of Texas at Austin (VITA-group)](https://vita-group.github.io/). Credits to Ajay Jaiswal, Zhenyu Zhang, Zhangheng Li, Lu Yin, Shiwei Liu and Junyuan Hong.
License: [MIT License](https://opensource.org/license/mit/)
Setup environment
```shell
pip install torch==2.0.0+cu117 torchvision==0.15.1+cu117 torchaudio==2.0.1 --index-url https://download.pytorch.org/whl/cu117
pip install transformers==4.31.0
pip install accelerate
pip install auto-gptq # for gptq
```
How to use pruned models
```python
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
base_model = 'llama-2-7b'
comp_method = 'magnitude_unstructured'
comp_degree = 0.2
model_path = f'vita-group/{base_model}_{comp_method}'
model = AutoModelForCausalLM.from_pretrained(
model_path,
revision=f's{comp_degree}',
torch_dtype=torch.float16,
low_cpu_mem_usage=True,
device_map="auto"
)
tokenizer = AutoTokenizer.from_pretrained('meta-llama/Llama-2-7b-hf')
input_ids = tokenizer('Hello! I am a VITA-compressed-LLM chatbot!', return_tensors='pt').input_ids.cuda()
outputs = model.generate(input_ids, max_new_tokens=128)
print(tokenizer.decode(outputs[0]))
```
How to use wanda+gptq models
```python
from transformers import AutoTokenizer
from auto_gptq import AutoGPTQForCausalLM
model_path = 'vita-group/llama-2-7b_wanda_2_4_gptq_4bit_128g'
tokenizer_path = 'meta-llama/Llama-2-7b-hf'
model = AutoGPTQForCausalLM.from_quantized(
model_path,
# inject_fused_attention=False, # or
disable_exllama=True,
device_map='auto',
)
tokenizer = AutoTokenizer.from_pretrained(tokenizer_path, trust_remote_code=True)
input_ids = tokenizer('Hello! I am a VITA-compressed-LLM chatbot!', return_tensors='pt').input_ids.to('cuda')
outputs = model.generate(input_ids=input_ids, max_length=128)
tokenizer.decode(outputs[0])
```
How to use gptq models
```python
from transformers import AutoTokenizer
from auto_gptq import AutoGPTQForCausalLM
# model_path = 'vita-group/llama-2-7b_wanda_2_4_gptq_4bit_128g'
# tokenizer_path = 'meta-llama/Llama-2-7b-hf'
model_path = 'vita-group/vicuna-7b-v1.3_gptq'
tokenizer_path = 'lmsys/vicuna-7b-v1.3'
model = AutoGPTQForCausalLM.from_quantized(
model_path,
# inject_fused_attention=False, # or
disable_exllama=True,
device_map='auto',
revision='2bit_128g',
)
from transformers import AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained(tokenizer_path, trust_remote_code=True)
input_ids = tokenizer('Hello! I am a VITA-compressed-LLM chatbot!', return_tensors='pt').input_ids.to('cuda')
outputs = model.generate(input_ids=input_ids, max_length=128)
tokenizer.decode(outputs[0])
```
| | Base Model | Model Size | Compression Method | Compression Degree |
|---:|:-------------|:-------------|:------------------------------------------------------------------------------------------------|:--------------------------------------------------------------------------------------------------|
| 0 | Llama-2 | 13b | [magnitude_semistruct](https://huggingface.co/vita-group/llama-2-13b_magnitude_semistruct) | [0.5_2to4](https://huggingface.co/vita-group/llama-2-13b_magnitude_semistruct/tree/0.5_2to4) |
| 1 | Llama-2 | 13b | [sparsegpt_semistruct](https://huggingface.co/vita-group/llama-2-13b_sparsegpt_semistruct) | [0.5_2to4](https://huggingface.co/vita-group/llama-2-13b_sparsegpt_semistruct/tree/0.5_2to4) |
| 2 | Llama-2 | 7b | [magnitude_unstructured](https://huggingface.co/vita-group/llama-2-7b_magnitude_unstructured) | [s0.1](https://huggingface.co/vita-group/llama-2-7b_magnitude_unstructured/tree/s0.1) |
| 3 | Llama-2 | 7b | [magnitude_unstructured](https://huggingface.co/vita-group/llama-2-7b_magnitude_unstructured) | [s0.2](https://huggingface.co/vita-group/llama-2-7b_magnitude_unstructured/tree/s0.2) |
| 4 | Llama-2 | 7b | [magnitude_unstructured](https://huggingface.co/vita-group/llama-2-7b_magnitude_unstructured) | [s0.3](https://huggingface.co/vita-group/llama-2-7b_magnitude_unstructured/tree/s0.3) |
| 5 | Llama-2 | 7b | [magnitude_unstructured](https://huggingface.co/vita-group/llama-2-7b_magnitude_unstructured) | [s0.5](https://huggingface.co/vita-group/llama-2-7b_magnitude_unstructured/tree/s0.5) |
| 6 | Llama-2 | 7b | [magnitude_unstructured](https://huggingface.co/vita-group/llama-2-7b_magnitude_unstructured) | [s0.6](https://huggingface.co/vita-group/llama-2-7b_magnitude_unstructured/tree/s0.6) |
| 7 | Llama-2 | 7b | [sparsegpt_unstructured](https://huggingface.co/vita-group/llama-2-7b_sparsegpt_unstructured) | [s0.1](https://huggingface.co/vita-group/llama-2-7b_sparsegpt_unstructured/tree/s0.1) |
| 8 | Llama-2 | 7b | [sparsegpt_unstructured](https://huggingface.co/vita-group/llama-2-7b_sparsegpt_unstructured) | [s0.2](https://huggingface.co/vita-group/llama-2-7b_sparsegpt_unstructured/tree/s0.2) |
| 9 | Llama-2 | 7b | [sparsegpt_unstructured](https://huggingface.co/vita-group/llama-2-7b_sparsegpt_unstructured) | [s0.3](https://huggingface.co/vita-group/llama-2-7b_sparsegpt_unstructured/tree/s0.3) |
| 10 | Llama-2 | 7b | [sparsegpt_unstructured](https://huggingface.co/vita-group/llama-2-7b_sparsegpt_unstructured) | [s0.5](https://huggingface.co/vita-group/llama-2-7b_sparsegpt_unstructured/tree/s0.5) |
| 11 | Llama-2 | 7b | [sparsegpt_unstructured](https://huggingface.co/vita-group/llama-2-7b_sparsegpt_unstructured) | [s0.6](https://huggingface.co/vita-group/llama-2-7b_sparsegpt_unstructured/tree/s0.6) |
| 12 | Llama-2 | 7b | [wanda_gptq](https://huggingface.co/vita-group/llama-2-7b_wanda_2_4_gptq_4bit_128g) | 4bit_128g |
| 13 | Llama-2 | 7b | [wanda_unstructured](https://huggingface.co/vita-group/llama-2-7b_wanda_unstructured) | [s0.1](https://huggingface.co/vita-group/llama-2-7b_wanda_unstructured/tree/s0.1) |
| 14 | Llama-2 | 7b | [wanda_unstructured](https://huggingface.co/vita-group/llama-2-7b_wanda_unstructured) | [s0.2](https://huggingface.co/vita-group/llama-2-7b_wanda_unstructured/tree/s0.2) |
| 15 | Llama-2 | 7b | [wanda_unstructured](https://huggingface.co/vita-group/llama-2-7b_wanda_unstructured) | [s0.3](https://huggingface.co/vita-group/llama-2-7b_wanda_unstructured/tree/s0.3) |
| 16 | Llama-2 | 7b | [wanda_unstructured](https://huggingface.co/vita-group/llama-2-7b_wanda_unstructured) | [s0.5](https://huggingface.co/vita-group/llama-2-7b_wanda_unstructured/tree/s0.5) |
| 17 | Llama-2 | 7b | [wanda_unstructured](https://huggingface.co/vita-group/llama-2-7b_wanda_unstructured) | [s0.6](https://huggingface.co/vita-group/llama-2-7b_wanda_unstructured/tree/s0.6) |
| 18 | Llama-2-chat | 13b | [magnitude_semistruct](https://huggingface.co/vita-group/llama-2-13b-chat_magnitude_semistruct) | [0.5_2to4](https://huggingface.co/vita-group/llama-2-13b-chat_magnitude_semistruct/tree/0.5_2to4) |
| 19 | Llama-2-chat | 13b | [sparsegpt_semistruct](https://huggingface.co/vita-group/llama-2-13b-chat_sparsegpt_semistruct) | [0.5_2to4](https://huggingface.co/vita-group/llama-2-13b-chat_sparsegpt_semistruct/tree/0.5_2to4) |
| 20 | vicuna | 13b | [magnitude_semistruct](https://huggingface.co/vita-group/vicuna-13b-v1.3_magnitude_semistruct) | [0.5_2to4](https://huggingface.co/vita-group/vicuna-13b-v1.3_magnitude_semistruct/tree/0.5_2to4) |
| 21 | vicuna | 13b | [sparsegpt_semistruct](https://huggingface.co/vita-group/vicuna-13b-v1.3_sparsegpt_semistruct) | [0.5_2to4](https://huggingface.co/vita-group/vicuna-13b-v1.3_sparsegpt_semistruct/tree/0.5_2to4) |
| 22 | vicuna-v1.3 | 13b | [gptq](https://huggingface.co/vita-group/vicuna-13b-v1.3_gptq) | [10bit_128g](https://huggingface.co/vita-group/vicuna-13b-v1.3_gptq/tree/10bit_128g) |
| 23 | vicuna-v1.3 | 13b | [gptq](https://huggingface.co/vita-group/vicuna-13b-v1.3_gptq) | [12bit_128g](https://huggingface.co/vita-group/vicuna-13b-v1.3_gptq/tree/12bit_128g) |
| 24 | vicuna-v1.3 | 13b | [gptq](https://huggingface.co/vita-group/vicuna-13b-v1.3_gptq) | [14bit_128g](https://huggingface.co/vita-group/vicuna-13b-v1.3_gptq/tree/14bit_128g) |
| 25 | vicuna-v1.3 | 13b | [gptq](https://huggingface.co/vita-group/vicuna-13b-v1.3_gptq) | [2bit_128g](https://huggingface.co/vita-group/vicuna-13b-v1.3_gptq/tree/2bit_128g) |
| 26 | vicuna-v1.3 | 13b | [gptq](https://huggingface.co/vita-group/vicuna-13b-v1.3_gptq) | [3bit_128g](https://huggingface.co/vita-group/vicuna-13b-v1.3_gptq/tree/3bit_128g) |
| 27 | vicuna-v1.3 | 13b | [gptq](https://huggingface.co/vita-group/vicuna-13b-v1.3_gptq) | [4bit_128g](https://huggingface.co/vita-group/vicuna-13b-v1.3_gptq/tree/4bit_128g) |
| 29 | vicuna-v1.3 | 13b | [gptq](https://huggingface.co/vita-group/vicuna-13b-v1.3_gptq) | [8bit_128g](https://huggingface.co/vita-group/vicuna-13b-v1.3_gptq/tree/8bit_128g) |
| 30 | vicuna-v1.3 | 7b | [gptq](https://huggingface.co/vita-group/vicuna-7b-v1.3_gptq) | [10bit_128g](https://huggingface.co/vita-group/vicuna-7b-v1.3_gptq/tree/10bit_128g) |
| 31 | vicuna-v1.3 | 7b | [gptq](https://huggingface.co/vita-group/vicuna-7b-v1.3_gptq) | [12bit_128g](https://huggingface.co/vita-group/vicuna-7b-v1.3_gptq/tree/12bit_128g) |
| 32 | vicuna-v1.3 | 7b | [gptq](https://huggingface.co/vita-group/vicuna-7b-v1.3_gptq) | [14bit_128g](https://huggingface.co/vita-group/vicuna-7b-v1.3_gptq/tree/14bit_128g) |
| 33 | vicuna-v1.3 | 7b | [gptq](https://huggingface.co/vita-group/vicuna-7b-v1.3_gptq) | [2bit_128g](https://huggingface.co/vita-group/vicuna-7b-v1.3_gptq/tree/2bit_128g) |
| 34 | vicuna-v1.3 | 7b | [gptq](https://huggingface.co/vita-group/vicuna-7b-v1.3_gptq) | [3bit_128g](https://huggingface.co/vita-group/vicuna-7b-v1.3_gptq/tree/3bit_128g) |
| 35 | vicuna-v1.3 | 7b | [gptq](https://huggingface.co/vita-group/vicuna-7b-v1.3_gptq) | [4bit_128g](https://huggingface.co/vita-group/vicuna-7b-v1.3_gptq/tree/4bit_128g) |
| 37 | vicuna-v1.3 | 7b | [gptq](https://huggingface.co/vita-group/vicuna-7b-v1.3_gptq) | [8bit_128g](https://huggingface.co/vita-group/vicuna-7b-v1.3_gptq/tree/8bit_128g) |
## Citations
If you are using models in this hub, please consider citing our papers.
```bibtex
@article{jaiswal2023emergence,
title={The Emergence of Essential Sparsity in Large Pre-trained Models: The Weights that Matter},
author={Jaiswal, Ajay and Liu, Shiwei and Chen, Tianlong and Wang, Zhangyang},
journal={arXiv},
year={2023}
}
@article{jaiswal2023compressing,
title={Compressing LLMs: The Truth is Rarely Pure and Never Simple},
author={Ajay Jaiswal and Zhe Gan and Xianzhi Du and Bowen Zhang and Zhangyang Wang and Yinfei Yang},
year={2023},
journal={arXiv},
}
```
For any question, please contact [Junyuan Hong](mailto:[email protected]).
|