Spaces:
Running
Running
Update README.md
Browse files
README.md
CHANGED
@@ -18,6 +18,7 @@ generative AI; graph learning, and more.
|
|
18 |
|
19 |
## Compressed LLM Model Zone
|
20 |
|
|
|
21 |
The models are prepared by [Visual Informatics Group @ University of Texas at Austin (VITA-group)](https://vita-group.github.io/).
|
22 |
|
23 |
License: [MIT License](https://opensource.org/license/mit/)
|
@@ -27,9 +28,10 @@ Setup environment
|
|
27 |
pip install torch==2.0.0+cu117 torchvision==0.15.1+cu117 torchaudio==2.0.1 --index-url https://download.pytorch.org/whl/cu117
|
28 |
pip install transformers==4.31.0
|
29 |
pip install accelerate
|
|
|
30 |
```
|
31 |
|
32 |
-
How to use
|
33 |
```python
|
34 |
import torch
|
35 |
from transformers import AutoModelForCausalLM, AutoTokenizer
|
@@ -45,11 +47,22 @@ model = AutoModelForCausalLM.from_pretrained(
|
|
45 |
device_map="auto"
|
46 |
)
|
47 |
tokenizer = AutoTokenizer.from_pretrained('meta-llama/Llama-2-7b-hf')
|
48 |
-
input_ids = tokenizer('Hello! I am a VITA-compressed-LLM chatbot!', return_tensors='pt').input_ids
|
49 |
-
outputs = model.generate(input_ids)
|
50 |
print(tokenizer.decode(outputs[0]))
|
51 |
```
|
52 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
53 |
|
54 |
| | Base Model | Model Size | Compression Method | Compression Degree |
|
55 |
|---:|:-------------|:-------------|:----------------------------------------------------------------------------------------------|:--------------------------------------------------------------------------------------|
|
@@ -68,3 +81,4 @@ print(tokenizer.decode(outputs[0]))
|
|
68 |
| 12 | Llama-2 | 7b | [wanda_unstructured](https://huggingface.co/vita-group/llama-2-7b_wanda_unstructured) | [s0.3](https://huggingface.co/vita-group/llama-2-7b_wanda_unstructured/tree/s0.3) |
|
69 |
| 13 | Llama-2 | 7b | [wanda_unstructured](https://huggingface.co/vita-group/llama-2-7b_wanda_unstructured) | [s0.5](https://huggingface.co/vita-group/llama-2-7b_wanda_unstructured/tree/s0.5) |
|
70 |
| 14 | Llama-2 | 7b | [wanda_unstructured](https://huggingface.co/vita-group/llama-2-7b_wanda_unstructured) | [s0.6](https://huggingface.co/vita-group/llama-2-7b_wanda_unstructured/tree/s0.6) |
|
|
|
|
18 |
|
19 |
## Compressed LLM Model Zone
|
20 |
|
21 |
+
|
22 |
The models are prepared by [Visual Informatics Group @ University of Texas at Austin (VITA-group)](https://vita-group.github.io/).
|
23 |
|
24 |
License: [MIT License](https://opensource.org/license/mit/)
|
|
|
28 |
pip install torch==2.0.0+cu117 torchvision==0.15.1+cu117 torchaudio==2.0.1 --index-url https://download.pytorch.org/whl/cu117
|
29 |
pip install transformers==4.31.0
|
30 |
pip install accelerate
|
31 |
+
pip install auto-gptq # for gptq
|
32 |
```
|
33 |
|
34 |
+
How to use pruned models
|
35 |
```python
|
36 |
import torch
|
37 |
from transformers import AutoModelForCausalLM, AutoTokenizer
|
|
|
47 |
device_map="auto"
|
48 |
)
|
49 |
tokenizer = AutoTokenizer.from_pretrained('meta-llama/Llama-2-7b-hf')
|
50 |
+
input_ids = tokenizer('Hello! I am a VITA-compressed-LLM chatbot!', return_tensors='pt').input_ids.cuda()
|
51 |
+
outputs = model.generate(input_ids, max_new_tokens=128)
|
52 |
print(tokenizer.decode(outputs[0]))
|
53 |
```
|
54 |
|
55 |
+
How to use quantized models
|
56 |
+
```python
|
57 |
+
from auto_gptq import AutoGPTQForCausalLM, BaseQuantizeConfig
|
58 |
+
model_path = 'vita-group/llama-2-7b_wanda_2_4_gptq_4bit_128g'
|
59 |
+
model = AutoGPTQForCausalLM.from_quantized(
|
60 |
+
model_path,
|
61 |
+
# inject_fused_attention=False, # or
|
62 |
+
disable_exllama=True,
|
63 |
+
device_map='auto',
|
64 |
+
)
|
65 |
+
```
|
66 |
|
67 |
| | Base Model | Model Size | Compression Method | Compression Degree |
|
68 |
|---:|:-------------|:-------------|:----------------------------------------------------------------------------------------------|:--------------------------------------------------------------------------------------|
|
|
|
81 |
| 12 | Llama-2 | 7b | [wanda_unstructured](https://huggingface.co/vita-group/llama-2-7b_wanda_unstructured) | [s0.3](https://huggingface.co/vita-group/llama-2-7b_wanda_unstructured/tree/s0.3) |
|
82 |
| 13 | Llama-2 | 7b | [wanda_unstructured](https://huggingface.co/vita-group/llama-2-7b_wanda_unstructured) | [s0.5](https://huggingface.co/vita-group/llama-2-7b_wanda_unstructured/tree/s0.5) |
|
83 |
| 14 | Llama-2 | 7b | [wanda_unstructured](https://huggingface.co/vita-group/llama-2-7b_wanda_unstructured) | [s0.6](https://huggingface.co/vita-group/llama-2-7b_wanda_unstructured/tree/s0.6) |
|
84 |
+
| 15 | Llama-2 | 7b | [wanda_gptq](https://huggingface.co/vita-group/llama-2-7b_wanda_2_4_gptq_4bit_128g) | 4bit |
|