File size: 21,697 Bytes
9f7491a
b1532b0
2abf116
ff6bf82
2abf116
a4dc223
f30185d
2abf116
f30185d
2abf116
ff6bf82
2abf116
b1532b0
f932259
b1532b0
 
39ca3cd
 
 
 
 
ff6bf82
 
b1532b0
f932259
6e0ffb7
2abf116
210730f
 
b1532b0
67fb9c5
b1532b0
2abf116
210730f
 
 
2abf116
210730f
 
 
2abf116
210730f
 
2abf116
 
a70ebda
 
c8369a8
cec1e53
a70ebda
 
cec1e53
 
 
a70ebda
cec1e53
 
 
a70ebda
 
 
 
 
c8369a8
cec1e53
a70ebda
 
 
c5bc110
 
 
 
 
 
 
7b1359c
2abf116
 
f30185d
276e058
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2abf116
7323889
 
 
 
276e058
 
 
7323889
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2abf116
 
 
 
7323889
 
276e058
7323889
64af198
2abf116
 
 
 
276e058
 
7323889
210730f
 
3a0fa78
 
 
210730f
 
 
3a0fa78
210730f
 
 
 
 
3a0fa78
 
210730f
 
3a0fa78
c4ff1c3
210730f
 
3a0fa78
210730f
 
 
 
 
 
 
 
540630a
 
210730f
540630a
 
 
 
3a0fa78
 
98b7df3
3a0fa78
 
 
 
 
 
 
0fdfbbc
540630a
210730f
ca2d13e
 
 
 
 
 
b1532b0
ca2d13e
 
 
 
 
 
 
e09fed0
ca2d13e
 
 
 
 
 
 
 
 
 
 
 
 
 
e09fed0
b1532b0
a4dc223
ff6bf82
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fffe6fa
ff6bf82
 
fffe6fa
ff6bf82
 
fffe6fa
ff6bf82
 
 
39ca3cd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dfcd8ed
39ca3cd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dfcd8ed
39ca3cd
 
 
 
 
 
 
 
 
 
 
 
 
27b0146
 
 
 
 
 
 
 
39ca3cd
 
cec1e53
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
39ca3cd
 
 
 
 
cec1e53
39ca3cd
 
 
 
 
cec1e53
 
27b0146
d3bf39d
057c005
ff6bf82
 
 
 
cec1e53
5012113
a4dc223
 
 
2abf116
2f6254d
a70ebda
a4dc223
2b20053
0fdfbbc
 
 
45b2f13
a4dc223
2abf116
a4dc223
f30185d
a4dc223
5012113
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
import io
import ast
import json
import base64
import spaces
import requests
import numpy as np
import gradio as gr
from PIL import Image
from io import BytesIO
import face_recognition
from turtle import title
from openai import OpenAI
from collections import Counter
from transformers import pipeline

import urllib.request
from transformers import YolosImageProcessor, YolosForObjectDetection
import torch
import matplotlib.pyplot as plt
from torchvision.transforms import ToTensor, ToPILImage

    
client = OpenAI()

pipe = pipeline("zero-shot-image-classification", model="patrickjohncyh/fashion-clip")

color_file_path = 'color_config.json'
attributes_file_path = 'attributes_config.json'
import os
OPENAI_API_KEY = os.getenv("OPENAI_API_KEY")


# Open and read the COLOR JSON file
with open(color_file_path, 'r') as file:
    color_data = json.load(file)

# Open and read the ATTRIBUTES JSON file
with open(attributes_file_path, 'r') as file:
    attributes_data = json.load(file)

COLOURS_DICT = color_data['color_mapping']
ATTRIBUTES_DICT = attributes_data['attribute_mapping']


def shot(input, category, level):
    output_dict = {}
    if level == 'variant':
        subColour, mainColour, score = get_colour(ast.literal_eval(str(input)), category)    
        openai_parsed_response = get_openAI_tags(ast.literal_eval(str(input)))
        face_embeddings = get_face_embeddings(ast.literal_eval(str(input)))
        cropped_images = get_cropped_images(ast.literal_eval(str(input)), category)

        # Ensure all outputs are JSON serializable
        output_dict['colors'] = {
            "main": mainColour,
            "sub": subColour,
            "score": score
        }
        output_dict['image_mapping'] = openai_parsed_response
        output_dict['face_embeddings'] = face_embeddings
        output_dict['cropped_images'] = cropped_images

    if level == 'product':
        common_result = get_predicted_attributes(ast.literal_eval(str(input)), category)    
        output_dict['attributes'] = common_result
        output_dict['subcategory'] = category
    
    # # Convert the dictionary to a JSON-serializable format
    # try:
    #     serialized_output = json.dumps(output_dict)
    # except TypeError as e:
    #     print(f"Serialization Error: {e}")
    #     return {"error": "Serialization failed"}

    return json.dumps(output_dict)



# @spaces.GPU  
# def get_colour(image_urls, category):
#     colourLabels = list(COLOURS_DICT.keys())
#     for i in range(len(colourLabels)):
#         colourLabels[i] = colourLabels[i] + " clothing: " + category

#     responses = pipe(image_urls, candidate_labels=colourLabels)
#     # Get the most common colour
#     mainColour = responses[0][0]['label'].split(" clothing:")[0]


#     if mainColour not in COLOURS_DICT:
#         return None, None, None

#     # Add category to the end of each label
#     labels = COLOURS_DICT[mainColour]
#     for i in range(len(labels)):
#         labels[i] = labels[i] + " clothing: " + category

#     # Run pipeline in one go
#     responses = pipe(image_urls, candidate_labels=labels)
#     subColour = responses[0][0]['label'].split(" clothing:")[0]

#     return subColour, mainColour, responses[0][0]['score']

@spaces.GPU
def get_colour(image_urls, category):
    # Prepare color labels
    colourLabels = [f"{color} clothing: {category}" for color in COLOURS_DICT.keys()]
    print("Colour Labels:", colourLabels)  # Debug: Print colour labels
    print("Image URLs:", image_urls)       # Debug: Print image URLs

    # Split labels into two batches
    mid_index = len(colourLabels) // 2
    first_batch = colourLabels[:mid_index]
    second_batch = colourLabels[mid_index:]

    # Process the first batch
    responses_first_batch = pipe(image_urls, candidate_labels=first_batch)
    # Get the top 3 from the first batch
    top3_first_batch = sorted(responses_first_batch[0], key=lambda x: x['score'], reverse=True)[:3]

    # Process the second batch
    responses_second_batch = pipe(image_urls, candidate_labels=second_batch)
    # Get the top 3 from the second batch
    top3_second_batch = sorted(responses_second_batch[0], key=lambda x: x['score'], reverse=True)[:3]

    # Combine the top 3 from each batch
    combined_top6 = top3_first_batch + top3_second_batch
    # Get the final top 3 from the combined list
    final_top3 = sorted(combined_top6, key=lambda x: x['score'], reverse=True)[:3]

    mainColour = final_top3[0]['label'].split(" clothing:")[0]

    if mainColour not in COLOURS_DICT:
        return None, None, None

    # Get sub-colors for the main color
    labels = [f"{label} clothing: {category}" for label in COLOURS_DICT[mainColour]]
    print("Labels for pipe:", labels)  # Debug: Confirm labels are correct

    responses = pipe(image_urls, candidate_labels=labels)
    subColour = responses[0][0]['label'].split(" clothing:")[0]

    return subColour, mainColour, responses[0][0]['score']




@spaces.GPU  
def get_predicted_attributes(image_urls, category):
    # Assuming ATTRIBUTES_DICT and pipe are defined outside this function
    attributes = list(ATTRIBUTES_DICT.get(category, {}).keys())

    # Mapping of possible values per attribute
    common_result = []
    for attribute in attributes:
        values = ATTRIBUTES_DICT.get(category, {}).get(attribute, [])

        if len(values) == 0:
            continue

        # Adjust labels for the pipeline to be in format: "{attr}: {value}, clothing: {category}"
        attribute_formatted = attribute.replace("colartype", "collar").replace("sleevelength", "sleeve length").replace("fabricstyle", "fabric")
        values_formatted = [f"{attribute_formatted}: {value}, clothing: {category}" for value in values]

        # Get the predicted values for the attribute
        responses = pipe(image_urls, candidate_labels=values_formatted)
        result = [response[0]['label'].split(", clothing:")[0] for response in responses]

        # If attribute is details, then get the top 2 most common labels
        if attribute_formatted == "details":
            result += [response[1]['label'].split(", clothing:")[0] for response in responses]
            common_result.append(Counter(result).most_common(2))
        else:
            common_result.append(Counter(result).most_common(1))

    # Clean up the results into one long string
    for i, result in enumerate(common_result):
        common_result[i] = ", ".join([f"{x[0]}" for x in result])
    
    result = {}

    # Iterate through the list and split each item into key and value
    for item in common_result:
        # Split by ': ' to separate the key and value
        key, value = item.split(': ', 1)
        
        if key == "details":
            details_split = value.split(", details: ")
            if len(details_split) == 2:
                result["details_1"] = details_split[0]
                result["details_2"] = details_split[1]
            else:
                result["details_1"] = value  # If there's only one detail, assign it to details 1
        else:
            result[key] = value

    return result

def get_openAI_tags(image_urls):
    # Create list containing JSONs of each image URL
    imageList = []
    for image in image_urls:
        imageList.append({"type": "image_url", "image_url": {"url": image}})
    
    openai_response = client.chat.completions.create(
        model="gpt-4o",
        messages=[
            {
            "role": "system",
            "content": [
                {
                "type": "text",
                "text": "You're a tagging assistant, you will help label and tag product pictures for my online e-commerce platform. Your tasks will be to return which angle the product images were taken from. You will have to choose from 'full-body', 'half-body', 'side', 'back', or 'zoomed' angles. You should label each of the images with one of these labels depending on which you think fits best (ideally, every label should be used at least once, but only if there are 5 or more images), and should respond with an unformatted dictionary where the key is a string representation of the url index of the url and the value is the assigned label."
                }
            ]
            },
            {
            "role": "user",
            "content": imageList
            },
        ],
        temperature=1,
        max_tokens=500,
        top_p=1,
        frequency_penalty=0,
        presence_penalty=0
    )
    response = json.loads(openai_response.choices[0].message.content)
    return response


@spaces.GPU
def get_face_embeddings(image_urls):
    # Initialize a dictionary to store the face encodings or errors
    results = {}

    # Loop through each image URL
    for index, url in enumerate(image_urls):
        try:
            # Try to download the image from the URL
            response = requests.get(url)
            # Raise an exception if the response is not successful
            response.raise_for_status()

            # Load the image using face_recognition
            image = face_recognition.load_image_file(BytesIO(response.content))

            # Get the face encodings for all faces in the image
            face_encodings = face_recognition.face_encodings(image)

            # If no faces are detected, store an empty list
            if not face_encodings:
                results[str(index)] = []
            else:
                # Otherwise, store the first face encoding as a list
                results[str(index)] = face_encodings[0].tolist()
        except Exception as e:
            # If any error occurs during the download or processing, store the error message
            results[str(index)] = f"Error processing image: {str(e)}"

    return results

# new
ACCURACY_THRESHOLD = 0.86

def open_image_from_url(url):
    # Fetch the image from the URL
    response = requests.get(url, stream=True)
    response.raise_for_status()  # Check if the request was successful

    # Open the image using PIL
    image = Image.open(BytesIO(response.content))

    return image

# Add the main data to the session state
main = [['Product Id', 'Sku', 'Color', 'Images', 'Status', 'Category', 'Text']]

# This is the order of the categories list. NO NOT CHANGE. Just for visualization purposes
cats = ['shirt, blouse', 'top, t-shirt, sweatshirt', 'sweater', 'cardigan', 'jacket', 'vest', 'pants', 'shorts', 'skirt', 'coat', 'dress', 'jumpsuit', 'cape', 'glasses', 'hat', 'headband, head covering, hair accessory', 'tie', 'glove', 'watch', 'belt', 'leg warmer', 'tights, stockings', 'sock', 'shoe', 'bag, wallet', 'scarf', 'umbrella', 'hood', 'collar', 'lapel', 'epaulette', 'sleeve', 'pocket', 'neckline', 'buckle', 'zipper', 'applique', 'bead', 'bow', 'flower', 'fringe', 'ribbon', 'rivet', 'ruffle', 'sequin', 'tassel']

filter = ['dress', 'jumpsuit', 'cape', 'glasses', 'hat', 'headband, head covering, hair accessory', 'tie', 'glove', 'watch', 'belt', 'leg warmer', 'tights, stockings', 'sock', 'shoe', 'scarf', 'umbrella', 'hood', 'collar', 'lapel', 'epaulette', 'sleeve', 'pocket', 'neckline', 'buckle', 'zipper', 'applique', 'bead', 'bow', 'flower', 'fringe', 'ribbon', 'rivet', 'ruffle', 'sequin', 'tassel']

# 0 for full body, 1 for upper body, 2 for lower body, 3 for over body (jacket, coat, etc), 4 for accessories
yolo_mapping = {
    'shirt, blouse': 3,
    'top, t-shirt, sweatshirt' : 1,
    'sweater': 1,
    'cardigan': 1,
    'jacket': 3,
    'vest': 1,
    'pants': 2,
    'shorts': 2,
    'skirt': 2,
    'coat': 3,
    'dress': 0,
    'jumpsuit': 0,
    'bag, wallet': 4
}

# First line full body, second line upper body, third line lower body, fourth line over body, fifth line accessories
label_mapping = [
    ['women-dress-mini', 'women-dress-dress', 'women-dress-maxi', 'women-dress-midi', 'women-playsuitsjumpsuits-playsuit', 'women-playsuitsjumpsuits-jumpsuit', 'women-coords-coords', 'women-swimwear-onepieces', 'women-swimwear-bikinisets'],
    ['women-sweatersknits-cardigan', 'women-top-waistcoat', 'women-top-blouse', 'women-sweatersknits-blouse', 'women-sweatersknits-sweater', 'women-top-top', 'women-loungewear-hoodie', 'women-top-camistanks', 'women-top-tshirt', 'women-top-croptop', 'women-loungewear-sweatshirt', 'women-top-body'],
    ['women-loungewear-joggers', 'women-bottom-trousers', 'women-bottom-leggings', 'women-bottom-jeans', 'women-bottom-shorts', 'women-bottom-skirt', 'women-loungewear-activewear', 'women-bottom-joggers'],
    ['women-top-shirt', 'women-outwear-coatjacket', 'women-outwear-blazer', 'women-outwear-coatjacket', 'women-outwear-kimonos'],
    ['women-accessories-bags']
]

MODEL_NAME = "valentinafeve/yolos-fashionpedia"

feature_extractor = YolosImageProcessor.from_pretrained('hustvl/yolos-small')
model = YolosForObjectDetection.from_pretrained(MODEL_NAME)

def get_category_index(category):
    # Find index of label mapping
    for i, labels in enumerate(label_mapping):
        if category in labels:
            break
    return i

def get_yolo_index(category):
    # Find index of yolo mapping
    return yolo_mapping[category]

def fix_channels(t):
    """
    Some images may have 4 channels (transparent images) or just 1 channel (black and white images), in order to let the images have only 3 channels. I am going to remove the fourth channel in transparent images and stack the single channel in back and white images.
    :param t: Tensor-like image
    :return: Tensor-like image with three channels
    """
    if len(t.shape) == 2:
        return ToPILImage()(torch.stack([t for i in (0, 0, 0)]))
    if t.shape[0] == 4:
        return ToPILImage()(t[:3])
    if t.shape[0] == 1:
        return ToPILImage()(torch.stack([t[0] for i in (0, 0, 0)]))
    return ToPILImage()(t)

def idx_to_text(i):
    return cats[i]

# Random colors used for visualization
COLORS = [[0.000, 0.447, 0.741], [0.850, 0.325, 0.098], [0.929, 0.694, 0.125],
          [0.494, 0.184, 0.556], [0.466, 0.674, 0.188], [0.301, 0.745, 0.933]]

# for output bounding box post-processing
def box_cxcywh_to_xyxy(x):
    x_c, y_c, w, h = x.unbind(1)
    b = [(x_c - 0.5 * w), (y_c - 0.5 * h),
         (x_c + 0.5 * w), (y_c + 0.5 * h)]
    return torch.stack(b, dim=1)

def rescale_bboxes(out_bbox, size):
    img_w, img_h = size
    b = box_cxcywh_to_xyxy(out_bbox)
    b = b * torch.tensor([img_w, img_h, img_w, img_h], dtype=torch.float32)

    return b

def plot_results(pil_img, prob, boxes):
    plt.figure(figsize=(16,10))
    plt.imshow(pil_img)
    ax = plt.gca()
    colors = COLORS * 100
    i = 0

    crops = []
    crop_classes = []
    for p, (xmin, ymin, xmax, ymax), c in zip(prob, boxes.tolist(), colors):
        cl = p.argmax()

        # Save each box as an image
        box_img = pil_img.crop((xmin, ymin, xmax, ymax))
        crops.append(box_img)
        crop_classes.append(idx_to_text(cl))

        ax.add_patch(plt.Rectangle((xmin, ymin), xmax - xmin, ymax - ymin,
                                   fill=False, color=c, linewidth=3))

        ax.text(xmin, ymin, idx_to_text(cl), fontsize=10,
                bbox=dict(facecolor=c, alpha=0.8))

        i += 1

    # Remove white padding all around the image
    plt.axis('off')
    plt.subplots_adjust(left=0, right=1, top=1, bottom=0)
    output_img = plt.gcf()
    plt.close()

    return output_img, crops, crop_classes


def visualize_predictions(image, outputs, threshold=0.8):
    # Keep only predictions with confidence >= threshold
    probas = outputs.logits.softmax(-1)[0, :, :-1]
    keep = probas.max(-1).values > threshold

    # Convert predicted boxes from [0; 1] to image scales
    bboxes_scaled = rescale_bboxes(outputs.pred_boxes[0, keep].cpu(), image.size)

    # Get filtered probabilities and boxes based on the filter list
    filter_set = set(filter)
    filtered_probas_boxes = [
        (proba, box) for proba, box in zip(probas[keep], bboxes_scaled)
        if idx_to_text(proba.argmax()) not in filter_set
    ]

    # If there is a jumpsuit or dress detected, remove them if there are other clothes detected
    contains_jumpsuit_or_dress = any(idx_to_text(proba.argmax()) in ["jumpsuit", "dress"] for proba, _ in filtered_probas_boxes)
    if contains_jumpsuit_or_dress and len(filtered_probas_boxes) > 1:
        filtered_probas_boxes = [
            (proba, box) for proba, box in filtered_probas_boxes
            if idx_to_text(proba.argmax()) not in ["jumpsuit", "dress"]
        ]

    # Remove duplicates: Only keep one box per class
    unique_classes = set()
    unique_filtered_probas_boxes = []
    for proba, box in filtered_probas_boxes:
        class_text = idx_to_text(proba.argmax())
        if class_text not in unique_classes:
            unique_classes.add(class_text)
            unique_filtered_probas_boxes.append((proba, box))

    # If there are remaining filtered probabilities, plot results
    output_img = None
    crops = None
    crop_classes = None
    if unique_filtered_probas_boxes:
        final_probas, final_boxes = zip(*unique_filtered_probas_boxes)
        output_img, crops, crop_classes = plot_results(image, list(final_probas), torch.stack(final_boxes))

    # Return the classes of the detected objects
    return [proba.argmax().item() for proba, _ in unique_filtered_probas_boxes], output_img, crops, crop_classes

@spaces.GPU 
def get_objects(image, threshold=0.8):
    class_counts = {}
    image = fix_channels(ToTensor()(image))
    image = image.resize((600, 800))

    inputs = feature_extractor(images=image, return_tensors="pt")
    outputs = model(**inputs)

    detected_classes, output_img, crops, crop_classes = visualize_predictions(image, outputs, threshold=threshold)
    for cl in detected_classes:
        class_name = idx_to_text(cl)
        if class_name not in class_counts:
            class_counts[class_name] = 0
        class_counts[class_name] += 1

    if crop_classes is not None:
        crop_classes = [get_yolo_index(c) for c in crop_classes]

    return class_counts, output_img, crops, crop_classes

def encode_images_to_base64(cropped_list):
    base64_images = []
    for image in cropped_list:
        with io.BytesIO() as buffer:
            image.convert('RGB').save(buffer, format='JPEG')
            base64_image = base64.b64encode(buffer.getvalue()).decode('utf-8')
            base64_images.append(base64_image)
    return base64_images


# def get_cropped_images(images,category):
#     cropped_list = []
#     resultsPerCategory = {}
#     for num, image in enumerate(images):
#         image = open_image_from_url(image)
#         class_counts, output_img, cropped_images, cropped_classes = get_objects(image, 0.37)
#         if not class_counts:
#             continue
        
#         # Get the inverse category as any other mapping label except the current one corresponding category
#         inverse_category = [label for i, labels in enumerate(label_mapping) for label in labels if i != get_category_index(category) and i != 0]
        
#         # If category is a cardigan, we don't recommend category indices 1 and 3
#         if category == 'women-sweatersknits-cardigan':
#             inverse_category = [label for i, labels in enumerate(label_mapping) for label in labels if i != get_category_index(category) and i != 1 and i != 3]

#         for i, image in enumerate(cropped_images):
#             cropped_category = cropped_classes[i]
#             print(cropped_category, cropped_classes[i], get_category_index(category))
            
#             specific_category = label_mapping[cropped_category]

#             if cropped_category == get_category_index(category):
#                 continue

#             cropped_list.append(image)


#     base64_images = encode_images_to_base64(cropped_list)

#     return base64_images




def get_cropped_images(images, category):
    cropped_list = []
    resultsPerCategory = {}
    for num, image in enumerate(images):
        image = open_image_from_url(image)
        class_counts, output_img, cropped_images, cropped_classes = get_objects(image, 0.37)
        
        if not class_counts:
            continue
        
        for i, image in enumerate(cropped_images):
            cropped_list.append(image)
    
    # Convert cropped images to base64 strings
    base64_images = encode_images_to_base64(cropped_list)

    return base64_images





# Define the Gradio interface with the updated components
iface = gr.Interface(
    fn=shot, 
    inputs=[
        gr.Textbox(label="Image URLs (starting with http/https) comma seperated "), 
        gr.Textbox(label="Category"),
        gr.Textbox(label="Level; accepted 'variant' or 'product'")
    ], 
    outputs="text",
     examples=[
        [['https://d2q1sfov6ca7my.cloudfront.net/eyJidWNrZXQiOiAiaGljY3VwLWltYWdlLWhvc3RpbmciLCAia2V5IjogIlc4MDAwMDAwMTM0LU9SL1c4MDAwMDAwMTM0LU9SLTEuanBnIiwgImVkaXRzIjogeyJyZXNpemUiOiB7IndpZHRoIjogODAwLCAiaGVpZ2h0IjogMTIwMC4wLCAiZml0IjogIm91dHNpZGUifX19',
 'https://d2q1sfov6ca7my.cloudfront.net/eyJidWNrZXQiOiAiaGljY3VwLWltYWdlLWhvc3RpbmciLCAia2V5IjogIlc4MDAwMDAwMTM0LU9SL1c4MDAwMDAwMTM0LU9SLTIuanBnIiwgImVkaXRzIjogeyJyZXNpemUiOiB7IndpZHRoIjogODAwLCAiaGVpZ2h0IjogMTIwMC4wLCAiZml0IjogIm91dHNpZGUifX19',
 'https://d2q1sfov6ca7my.cloudfront.net/eyJidWNrZXQiOiAiaGljY3VwLWltYWdlLWhvc3RpbmciLCAia2V5IjogIlc4MDAwMDAwMTM0LU9SL1c4MDAwMDAwMTM0LU9SLTMuanBnIiwgImVkaXRzIjogeyJyZXNpemUiOiB7IndpZHRoIjogODAwLCAiaGVpZ2h0IjogMTIwMC4wLCAiZml0IjogIm91dHNpZGUifX19'], "women-top-shirt","variant"]],
    description="Add an image URL (starting with http/https) or upload a picture, and provide a list of labels separated by commas.",
    title="Full product flow"
)

# Launch the interface
iface.launch()