user-agent
commited on
Update app.py
Browse files
app.py
CHANGED
@@ -1,41 +1,69 @@
|
|
1 |
-
|
|
|
2 |
import requests
|
3 |
-
from io import BytesIO
|
4 |
-
import gradio as gr
|
5 |
-
from transformers import pipeline
|
6 |
import numpy as np
|
|
|
7 |
from PIL import Image
|
8 |
-
import
|
9 |
-
|
|
|
|
|
10 |
pipe = pipeline("zero-shot-image-classification", model="patrickjohncyh/fashion-clip")
|
11 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
12 |
|
13 |
@spaces.GPU
|
14 |
-
def
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
28 |
|
29 |
# Define the Gradio interface with the updated components
|
30 |
iface = gr.Interface(
|
31 |
fn=shot,
|
32 |
inputs=[
|
33 |
-
gr.Textbox(label="Image
|
34 |
-
gr.Textbox(label="
|
35 |
],
|
36 |
outputs=gr.Label(),
|
37 |
description="Add an image URL (starting with http/https) or upload a picture, and provide a list of labels separated by commas.",
|
38 |
-
title="
|
39 |
)
|
40 |
|
41 |
# Launch the interface
|
|
|
1 |
+
import json
|
2 |
+
import spaces
|
3 |
import requests
|
|
|
|
|
|
|
4 |
import numpy as np
|
5 |
+
import gradio as gr
|
6 |
from PIL import Image
|
7 |
+
from io import BytesIO
|
8 |
+
from turtle import title
|
9 |
+
from transformers import pipeline
|
10 |
+
import ast
|
11 |
pipe = pipeline("zero-shot-image-classification", model="patrickjohncyh/fashion-clip")
|
12 |
+
|
13 |
+
file_path = 'config.json'
|
14 |
+
|
15 |
+
# Open and read the JSON file
|
16 |
+
with open(file_path, 'r') as file:
|
17 |
+
data = json.load(file)
|
18 |
+
|
19 |
+
COLOURS_DICT = data['color_mapping']
|
20 |
+
|
21 |
+
|
22 |
+
|
23 |
+
def shot(input, category):
|
24 |
+
subColour,mainColour,score = get_colour(ast.literal_eval(str(input)),category)
|
25 |
+
return subColour,mainColour,score
|
26 |
+
|
27 |
+
|
28 |
|
29 |
@spaces.GPU
|
30 |
+
def get_colour(image_urls, category):
|
31 |
+
colourLabels = list(COLOURS_DICT.keys())
|
32 |
+
for i in range(len(colourLabels)):
|
33 |
+
colourLabels[i] = colourLabels[i] + " clothing: " + category
|
34 |
+
|
35 |
+
responses = pipe(image_urls, candidate_labels=colourLabels, device=device)
|
36 |
+
# Get the most common colour
|
37 |
+
mainColour = responses[0][0]['label'].split(" clothing:")[0]
|
38 |
+
|
39 |
+
|
40 |
+
if mainColour not in COLOURS_DICT:
|
41 |
+
return None, None, None
|
42 |
+
|
43 |
+
# Add category to the end of each label
|
44 |
+
labels = COLOURS_DICT[mainColour]
|
45 |
+
for i in range(len(labels)):
|
46 |
+
labels[i] = labels[i] + " clothing: " + category
|
47 |
+
|
48 |
+
# Run pipeline in one go
|
49 |
+
responses = pipe(image_urls, candidate_labels=labels, device=device)
|
50 |
+
subColour = responses[0][0]['label'].split(" clothing:")[0]
|
51 |
+
|
52 |
+
return subColour, mainColour, responses[0][0]['score']
|
53 |
+
|
54 |
+
|
55 |
+
|
56 |
|
57 |
# Define the Gradio interface with the updated components
|
58 |
iface = gr.Interface(
|
59 |
fn=shot,
|
60 |
inputs=[
|
61 |
+
gr.Textbox(label="Image URLs (starting with http/https) comma seperated "),
|
62 |
+
gr.Textbox(label="Category")
|
63 |
],
|
64 |
outputs=gr.Label(),
|
65 |
description="Add an image URL (starting with http/https) or upload a picture, and provide a list of labels separated by commas.",
|
66 |
+
title="Full product flow"
|
67 |
)
|
68 |
|
69 |
# Launch the interface
|