user-agent commited on
Commit
276e058
·
verified ·
1 Parent(s): 3a0fa78

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +30 -4
app.py CHANGED
@@ -77,31 +77,57 @@ def shot(input, category, level):
77
 
78
 
79
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
80
  @spaces.GPU
81
  def get_colour(image_urls, category):
82
  colourLabels = list(COLOURS_DICT.keys())
83
  for i in range(len(colourLabels)):
84
  colourLabels[i] = colourLabels[i] + " clothing: " + category
85
 
 
 
 
86
  responses = pipe(image_urls, candidate_labels=colourLabels)
87
- # Get the most common colour
88
  mainColour = responses[0][0]['label'].split(" clothing:")[0]
89
 
90
-
91
  if mainColour not in COLOURS_DICT:
92
  return None, None, None
93
 
94
- # Add category to the end of each label
95
  labels = COLOURS_DICT[mainColour]
96
  for i in range(len(labels)):
97
  labels[i] = labels[i] + " clothing: " + category
98
 
99
- # Run pipeline in one go
100
  responses = pipe(image_urls, candidate_labels=labels)
101
  subColour = responses[0][0]['label'].split(" clothing:")[0]
102
 
103
  return subColour, mainColour, responses[0][0]['score']
104
 
 
 
105
  @spaces.GPU
106
  def get_predicted_attributes(image_urls, category):
107
  # Assuming ATTRIBUTES_DICT and pipe are defined outside this function
 
77
 
78
 
79
 
80
+ # @spaces.GPU
81
+ # def get_colour(image_urls, category):
82
+ # colourLabels = list(COLOURS_DICT.keys())
83
+ # for i in range(len(colourLabels)):
84
+ # colourLabels[i] = colourLabels[i] + " clothing: " + category
85
+
86
+ # responses = pipe(image_urls, candidate_labels=colourLabels)
87
+ # # Get the most common colour
88
+ # mainColour = responses[0][0]['label'].split(" clothing:")[0]
89
+
90
+
91
+ # if mainColour not in COLOURS_DICT:
92
+ # return None, None, None
93
+
94
+ # # Add category to the end of each label
95
+ # labels = COLOURS_DICT[mainColour]
96
+ # for i in range(len(labels)):
97
+ # labels[i] = labels[i] + " clothing: " + category
98
+
99
+ # # Run pipeline in one go
100
+ # responses = pipe(image_urls, candidate_labels=labels)
101
+ # subColour = responses[0][0]['label'].split(" clothing:")[0]
102
+
103
+ # return subColour, mainColour, responses[0][0]['score']
104
  @spaces.GPU
105
  def get_colour(image_urls, category):
106
  colourLabels = list(COLOURS_DICT.keys())
107
  for i in range(len(colourLabels)):
108
  colourLabels[i] = colourLabels[i] + " clothing: " + category
109
 
110
+ print("Colour Labels:", colourLabels) # Debug: Print colour labels
111
+ print("Image URLs:", image_urls) # Debug: Print image URLs
112
+
113
  responses = pipe(image_urls, candidate_labels=colourLabels)
 
114
  mainColour = responses[0][0]['label'].split(" clothing:")[0]
115
 
 
116
  if mainColour not in COLOURS_DICT:
117
  return None, None, None
118
 
 
119
  labels = COLOURS_DICT[mainColour]
120
  for i in range(len(labels)):
121
  labels[i] = labels[i] + " clothing: " + category
122
 
123
+ print("Labels for pipe:", labels) # Debug: Confirm labels are correct
124
  responses = pipe(image_urls, candidate_labels=labels)
125
  subColour = responses[0][0]['label'].split(" clothing:")[0]
126
 
127
  return subColour, mainColour, responses[0][0]['score']
128
 
129
+
130
+
131
  @spaces.GPU
132
  def get_predicted_attributes(image_urls, category):
133
  # Assuming ATTRIBUTES_DICT and pipe are defined outside this function