# import gradio as gr | |
# from langchain.llms import LlamaCpp | |
# from langchain import PromptTemplate, LLMChain | |
# from langchain.llms import GPT4All | |
# from langchain.callbacks.streaming_stdout import StreamingStdOutCallbackHandler | |
# # import requests | |
# # url = "https://huggingface.co/TheBloke/Nous-Hermes-13B-GGML/resolve/main/nous-hermes-13b.ggmlv3.q4_0.bin" | |
# # response = requests.get(url) | |
# # with open("nous-hermes-13b.ggmlv3.q4_0.bin", "wb") as f: | |
# # f.write(response.content) | |
# print("DONE") | |
# def func(user): | |
# template = """ | |
# Your name is John and not a assistant but more like a chatbot. Respond precise not more words and act like a human. for example: user: How are you? You: I'm doing good how about you?. user: hello You: Hello how you doing?. Don't say How can I assist you today?. | |
# Question: {question} | |
# Answer: """ | |
# prompt = PromptTemplate(template=template, input_variables=["question"]) | |
# local_path = ( | |
# "./nous-hermes-13b.ggmlv3.q4_0.bin" | |
# ) | |
# # # Callbacks support token-wise streaming | |
# # callbacks = [StreamingStdOutCallbackHandler()] | |
# # Verbose is required to pass to the callback manager | |
# llm = LlamaCpp(model_path="./nous-hermes-13b.ggmlv3.q4_0.bin", n_ctx=2048) | |
# llm_chain = LLMChain(prompt=prompt, llm=llm) | |
# question = user | |
# llm_chain.run(question) | |
# return llm_chain.run(question) | |
# iface = gr.Interface(fn=func, inputs="text", outputs="text") | |
# iface.launch() | |
# import gradio as gr | |
# from langchain.llms import LlamaCpp | |
# from langchain import PromptTemplate, LLMChain | |
# from langchain.callbacks.streaming_stdout import StreamingStdOutCallbackHandler | |
# print("DONE") | |
# def func(user): | |
# template = """ | |
# Your name is John and not a assistant but more like a chatbot. Respond precise not more words and act like a human. for example: user: How are you? You: I'm doing good how about you?. user: hello You: Hello how you doing?. Don't say How can I assist you today?. | |
# Question: {question} | |
# Answer: """ | |
# prompt = PromptTemplate(template=template, input_variables=["question"]) | |
# local_path = "./nous-hermes-13b.ggmlv3.q4_0.bin" | |
# llm = LlamaCpp(model_path=local_path) | |
# llm_chain = LLMChain(prompt=prompt, llm=llm, streaming=True) # Enable streaming mode | |
# question = user | |
# llm_chain.run(question) | |
# return llm_chain.run(question) | |
# iface = gr.Interface(fn=func, inputs="text", outputs="text") | |
# iface.launch() | |
import gradio as gr | |
from gpt4allj import Model | |
# Load the local model | |
model = Model('./ggml-gpt4all-j.bin') | |
# Define a function that generates the model's response given a prompt | |
def generate_response(prompt): | |
response = model.generate(prompt) | |
return response | |
# Create a Gradio interface with a text input and an output text box | |
iface = gr.Interface( | |
fn=generate_response, | |
inputs="text", | |
outputs="text", | |
title="GPT-4 AllJ", | |
description="Generate responses using GPT-4 AllJ model." | |
) | |
# Run the Gradio interface | |
iface.launch() | |