tommy24 commited on
Commit
1111730
1 Parent(s): 18222e8

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +43 -18
app.py CHANGED
@@ -46,30 +46,55 @@
46
  # iface = gr.Interface(fn=func, inputs="text", outputs="text")
47
  # iface.launch()
48
 
49
- import gradio as gr
50
- from langchain.llms import LlamaCpp
51
- from langchain import PromptTemplate, LLMChain
52
- from langchain.callbacks.streaming_stdout import StreamingStdOutCallbackHandler
53
 
54
- print("DONE")
55
 
56
- def func(user):
57
- template = """
58
- Your name is John and not a assistant but more like a chatbot. Respond precise not more words and act like a human. for example: user: How are you? You: I'm doing good how about you?. user: hello You: Hello how you doing?. Don't say How can I assist you today?.
59
- Question: {question}
60
 
61
- Answer: """
62
 
63
- prompt = PromptTemplate(template=template, input_variables=["question"])
64
 
65
- local_path = "./nous-hermes-13b.ggmlv3.q4_0.bin"
66
 
67
- llm = LlamaCpp(model_path=local_path)
68
- llm_chain = LLMChain(prompt=prompt, llm=llm, streaming=True) # Enable streaming mode
69
- question = user
70
- llm_chain.run(question)
 
 
 
 
 
71
 
72
- return llm_chain.run(question)
73
 
74
- iface = gr.Interface(fn=func, inputs="text", outputs="text")
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
75
  iface.launch()
 
 
46
  # iface = gr.Interface(fn=func, inputs="text", outputs="text")
47
  # iface.launch()
48
 
49
+ # import gradio as gr
50
+ # from langchain.llms import LlamaCpp
51
+ # from langchain import PromptTemplate, LLMChain
52
+ # from langchain.callbacks.streaming_stdout import StreamingStdOutCallbackHandler
53
 
54
+ # print("DONE")
55
 
56
+ # def func(user):
57
+ # template = """
58
+ # Your name is John and not a assistant but more like a chatbot. Respond precise not more words and act like a human. for example: user: How are you? You: I'm doing good how about you?. user: hello You: Hello how you doing?. Don't say How can I assist you today?.
59
+ # Question: {question}
60
 
61
+ # Answer: """
62
 
63
+ # prompt = PromptTemplate(template=template, input_variables=["question"])
64
 
65
+ # local_path = "./nous-hermes-13b.ggmlv3.q4_0.bin"
66
 
67
+ # llm = LlamaCpp(model_path=local_path)
68
+ # llm_chain = LLMChain(prompt=prompt, llm=llm, streaming=True) # Enable streaming mode
69
+ # question = user
70
+ # llm_chain.run(question)
71
+
72
+ # return llm_chain.run(question)
73
+
74
+ # iface = gr.Interface(fn=func, inputs="text", outputs="text")
75
+ # iface.launch()
76
 
 
77
 
78
+ import gradio as gr
79
+ from gpt4allj import Model
80
+
81
+ # Load the local model
82
+ model = Model('./ggml-gpt4all-j.bin')
83
+
84
+ # Define a function that generates the model's response given a prompt
85
+ def generate_response(prompt):
86
+ response = model.generate(prompt)
87
+ return response
88
+
89
+ # Create a Gradio interface with a text input and an output text box
90
+ iface = gr.Interface(
91
+ fn=generate_response,
92
+ inputs="text",
93
+ outputs="text",
94
+ title="GPT-4 AllJ",
95
+ description="Generate responses using GPT-4 AllJ model."
96
+ )
97
+
98
+ # Run the Gradio interface
99
  iface.launch()
100
+