File size: 3,101 Bytes
a35163f
 
 
 
 
683cf67
f1f9df6
a35163f
1e2ba54
a35163f
1e2ba54
a35163f
1e2ba54
a35163f
 
1e2ba54
f1f9df6
a35163f
683cf67
a35163f
448c406
a35163f
 
 
448c406
a35163f
448c406
a35163f
 
 
 
 
 
448c406
a35163f
 
 
 
 
 
 
 
 
 
 
 
 
666bc15
1111730
 
 
 
a35163f
1111730
a35163f
1111730
 
 
 
a35163f
1111730
a35163f
1111730
448c406
1111730
448c406
1111730
 
 
 
 
 
 
 
 
683cf67
448c406
1111730
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a35163f
1111730
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
# import gradio as gr
# from langchain.llms import LlamaCpp
# from langchain import PromptTemplate, LLMChain
# from langchain.llms import GPT4All
# from langchain.callbacks.streaming_stdout import StreamingStdOutCallbackHandler


# # import requests

# # url = "https://huggingface.co/TheBloke/Nous-Hermes-13B-GGML/resolve/main/nous-hermes-13b.ggmlv3.q4_0.bin"

# # response = requests.get(url)

# # with open("nous-hermes-13b.ggmlv3.q4_0.bin", "wb") as f:
# #     f.write(response.content)


# print("DONE")

# def func(user):
        
#     template = """
#     Your name is John and not a assistant but more like a chatbot. Respond precise not more words and act like a human. for example: user: How are you? You: I'm doing good how about you?. user: hello You: Hello how you doing?. Don't say How can I assist you today?.
#     Question: {question}
    
#     Answer: """
    
#     prompt = PromptTemplate(template=template, input_variables=["question"])
    
#     local_path = (
#         "./nous-hermes-13b.ggmlv3.q4_0.bin"
#     )

    
#     # # Callbacks support token-wise streaming
#     # callbacks = [StreamingStdOutCallbackHandler()]
    
#     # Verbose is required to pass to the callback manager
#     llm = LlamaCpp(model_path="./nous-hermes-13b.ggmlv3.q4_0.bin", n_ctx=2048)
#     llm_chain = LLMChain(prompt=prompt, llm=llm)
#     question = user
#     llm_chain.run(question)

#     return llm_chain.run(question)

# iface = gr.Interface(fn=func, inputs="text", outputs="text")
# iface.launch()

# import gradio as gr
# from langchain.llms import LlamaCpp
# from langchain import PromptTemplate, LLMChain
# from langchain.callbacks.streaming_stdout import StreamingStdOutCallbackHandler

# print("DONE")

# def func(user):
#     template = """
#     Your name is John and not a assistant but more like a chatbot. Respond precise not more words and act like a human. for example: user: How are you? You: I'm doing good how about you?. user: hello You: Hello how you doing?. Don't say How can I assist you today?.
#     Question: {question}
    
#     Answer: """
    
#     prompt = PromptTemplate(template=template, input_variables=["question"])
    
#     local_path = "./nous-hermes-13b.ggmlv3.q4_0.bin"
    
#     llm = LlamaCpp(model_path=local_path)
#     llm_chain = LLMChain(prompt=prompt, llm=llm, streaming=True)  # Enable streaming mode
#     question = user
#     llm_chain.run(question)

#     return llm_chain.run(question)

# iface = gr.Interface(fn=func, inputs="text", outputs="text")
# iface.launch()


import gradio as gr
from gpt4allj import Model

# Load the local model
model = Model('./ggml-gpt4all-j.bin')

# Define a function that generates the model's response given a prompt
def generate_response(prompt):
    response = model.generate(prompt)
    return response

# Create a Gradio interface with a text input and an output text box
iface = gr.Interface(
    fn=generate_response,
    inputs="text",
    outputs="text",
    title="GPT-4 AllJ",
    description="Generate responses using GPT-4 AllJ model."
)

# Run the Gradio interface
iface.launch()