Update app.py
Browse files
app.py
CHANGED
@@ -1,45 +1,75 @@
|
|
1 |
-
import gradio as gr
|
2 |
-
from langchain.llms import LlamaCpp
|
3 |
-
from langchain import PromptTemplate, LLMChain
|
4 |
-
from langchain.llms import GPT4All
|
5 |
-
from langchain.callbacks.streaming_stdout import StreamingStdOutCallbackHandler
|
6 |
|
7 |
|
8 |
-
# import requests
|
9 |
|
10 |
-
# url = "https://huggingface.co/TheBloke/Nous-Hermes-13B-GGML/resolve/main/nous-hermes-13b.ggmlv3.q4_0.bin"
|
11 |
|
12 |
-
# response = requests.get(url)
|
13 |
|
14 |
-
# with open("nous-hermes-13b.ggmlv3.q4_0.bin", "wb") as f:
|
15 |
-
# f.write(response.content)
|
16 |
|
17 |
|
18 |
-
print("DONE")
|
19 |
|
20 |
-
def func(user):
|
21 |
|
22 |
-
|
|
|
|
|
23 |
|
24 |
-
|
25 |
|
26 |
-
|
|
|
|
|
|
|
|
|
|
|
27 |
|
28 |
-
|
29 |
-
|
30 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
31 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
32 |
|
33 |
-
|
34 |
-
# callbacks = [StreamingStdOutCallbackHandler()]
|
35 |
|
36 |
-
|
37 |
-
|
38 |
-
llm_chain = LLMChain(prompt=prompt, llm=llm)
|
39 |
question = user
|
40 |
llm_chain.run(question)
|
41 |
|
42 |
return llm_chain.run(question)
|
43 |
|
44 |
iface = gr.Interface(fn=func, inputs="text", outputs="text")
|
45 |
-
iface.launch()
|
|
|
1 |
+
# import gradio as gr
|
2 |
+
# from langchain.llms import LlamaCpp
|
3 |
+
# from langchain import PromptTemplate, LLMChain
|
4 |
+
# from langchain.llms import GPT4All
|
5 |
+
# from langchain.callbacks.streaming_stdout import StreamingStdOutCallbackHandler
|
6 |
|
7 |
|
8 |
+
# # import requests
|
9 |
|
10 |
+
# # url = "https://huggingface.co/TheBloke/Nous-Hermes-13B-GGML/resolve/main/nous-hermes-13b.ggmlv3.q4_0.bin"
|
11 |
|
12 |
+
# # response = requests.get(url)
|
13 |
|
14 |
+
# # with open("nous-hermes-13b.ggmlv3.q4_0.bin", "wb") as f:
|
15 |
+
# # f.write(response.content)
|
16 |
|
17 |
|
18 |
+
# print("DONE")
|
19 |
|
20 |
+
# def func(user):
|
21 |
|
22 |
+
# template = """
|
23 |
+
# Your name is John and not a assistant but more like a chatbot. Respond precise not more words and act like a human. for example: user: How are you? You: I'm doing good how about you?. user: hello You: Hello how you doing?. Don't say How can I assist you today?.
|
24 |
+
# Question: {question}
|
25 |
|
26 |
+
# Answer: """
|
27 |
|
28 |
+
# prompt = PromptTemplate(template=template, input_variables=["question"])
|
29 |
+
|
30 |
+
# local_path = (
|
31 |
+
# "./nous-hermes-13b.ggmlv3.q4_0.bin"
|
32 |
+
# )
|
33 |
+
|
34 |
|
35 |
+
# # # Callbacks support token-wise streaming
|
36 |
+
# # callbacks = [StreamingStdOutCallbackHandler()]
|
37 |
+
|
38 |
+
# # Verbose is required to pass to the callback manager
|
39 |
+
# llm = LlamaCpp(model_path="./nous-hermes-13b.ggmlv3.q4_0.bin", n_ctx=2048)
|
40 |
+
# llm_chain = LLMChain(prompt=prompt, llm=llm)
|
41 |
+
# question = user
|
42 |
+
# llm_chain.run(question)
|
43 |
+
|
44 |
+
# return llm_chain.run(question)
|
45 |
+
|
46 |
+
# iface = gr.Interface(fn=func, inputs="text", outputs="text")
|
47 |
+
# iface.launch()
|
48 |
|
49 |
+
import gradio as gr
|
50 |
+
from langchain.llms import LlamaCpp
|
51 |
+
from langchain import PromptTemplate, LLMChain
|
52 |
+
from langchain.callbacks.streaming_stdout import StreamingStdOutCallbackHandler
|
53 |
+
|
54 |
+
print("DONE")
|
55 |
+
|
56 |
+
def func(user):
|
57 |
+
template = """
|
58 |
+
Your name is John and not a assistant but more like a chatbot. Respond precise not more words and act like a human. for example: user: How are you? You: I'm doing good how about you?. user: hello You: Hello how you doing?. Don't say How can I assist you today?.
|
59 |
+
Question: {question}
|
60 |
+
|
61 |
+
Answer: """
|
62 |
+
|
63 |
+
prompt = PromptTemplate(template=template, input_variables=["question"])
|
64 |
|
65 |
+
local_path = "./nous-hermes-13b.ggmlv3.q4_0.bin"
|
|
|
66 |
|
67 |
+
llm = LlamaCpp(model_path=local_path, n_ctx=2048)
|
68 |
+
llm_chain = LLMChain(prompt=prompt, llm=llm, streaming=True) # Enable streaming mode
|
|
|
69 |
question = user
|
70 |
llm_chain.run(question)
|
71 |
|
72 |
return llm_chain.run(question)
|
73 |
|
74 |
iface = gr.Interface(fn=func, inputs="text", outputs="text")
|
75 |
+
iface.launch()
|