Spaces:
Running
on
Zero
Running
on
Zero
import os | |
import sys | |
import io,time | |
from fastapi import FastAPI, Response, File, UploadFile, Form | |
from fastapi.responses import HTMLResponse | |
from contextlib import asynccontextmanager | |
ROOT_DIR = os.path.dirname(os.path.abspath(__file__)) | |
sys.path.append('{}/../..'.format(ROOT_DIR)) | |
sys.path.append('{}/../../third_party/Matcha-TTS'.format(ROOT_DIR)) | |
from cosyvoice.cli.cosyvoice import CosyVoice | |
from cosyvoice.utils.file_utils import load_wav | |
import numpy as np | |
import torch | |
import torchaudio | |
import logging | |
logging.getLogger('matplotlib').setLevel(logging.WARNING) | |
class LaunchFailed(Exception): | |
pass | |
async def lifespan(app: FastAPI): | |
model_dir = os.getenv("MODEL_DIR", "pretrained_models/CosyVoice-300M-SFT") | |
if model_dir: | |
logging.info("MODEL_DIR is {}", model_dir) | |
app.cosyvoice = CosyVoice('../../'+model_dir) | |
# sft usage | |
logging.info("Avaliable speakers {}", app.cosyvoice.list_avaliable_spks()) | |
else: | |
raise LaunchFailed("MODEL_DIR environment must set") | |
yield | |
app = FastAPI(lifespan=lifespan) | |
def buildResponse(output): | |
buffer = io.BytesIO() | |
torchaudio.save(buffer, output, 22050, format="wav") | |
buffer.seek(0) | |
return Response(content=buffer.read(-1), media_type="audio/wav") | |
async def sft(tts: str = Form(), role: str = Form()): | |
start = time.process_time() | |
output = app.cosyvoice.inference_sft(tts, role) | |
end = time.process_time() | |
logging.info("infer time is {} seconds", end-start) | |
return buildResponse(output['tts_speech']) | |
async def zeroShot(tts: str = Form(), prompt: str = Form(), audio: UploadFile = File()): | |
start = time.process_time() | |
prompt_speech = load_wav(audio.file, 16000) | |
prompt_audio = (prompt_speech.numpy() * (2**15)).astype(np.int16).tobytes() | |
prompt_speech_16k = torch.from_numpy(np.array(np.frombuffer(prompt_audio, dtype=np.int16))).unsqueeze(dim=0) | |
prompt_speech_16k = prompt_speech_16k.float() / (2**15) | |
output = app.cosyvoice.inference_zero_shot(tts, prompt, prompt_speech_16k) | |
end = time.process_time() | |
logging.info("infer time is {} seconds", end-start) | |
return buildResponse(output['tts_speech']) | |
async def crossLingual(tts: str = Form(), audio: UploadFile = File()): | |
start = time.process_time() | |
prompt_speech = load_wav(audio.file, 16000) | |
prompt_audio = (prompt_speech.numpy() * (2**15)).astype(np.int16).tobytes() | |
prompt_speech_16k = torch.from_numpy(np.array(np.frombuffer(prompt_audio, dtype=np.int16))).unsqueeze(dim=0) | |
prompt_speech_16k = prompt_speech_16k.float() / (2**15) | |
output = app.cosyvoice.inference_cross_lingual(tts, prompt_speech_16k) | |
end = time.process_time() | |
logging.info("infer time is {} seconds", end-start) | |
return buildResponse(output['tts_speech']) | |
async def instruct(tts: str = Form(), role: str = Form(), instruct: str = Form()): | |
start = time.process_time() | |
output = app.cosyvoice.inference_instruct(tts, role, instruct) | |
end = time.process_time() | |
logging.info("infer time is {} seconds", end-start) | |
return buildResponse(output['tts_speech']) | |
async def roles(): | |
return {"roles": app.cosyvoice.list_avaliable_spks()} | |
async def root(): | |
return """ | |
<!DOCTYPE html> | |
<html lang=zh-cn> | |
<head> | |
<meta charset=utf-8> | |
<title>Api information</title> | |
</head> | |
<body> | |
Get the supported tones from the Roles API first, then enter the tones and textual content in the TTS API for synthesis. <a href='./docs'>Documents of API</a> | |
</body> | |
</html> | |
""" | |