CosyVoice / runtime /python /fastapi_server.py
iflamed's picture
support upload audio
a4ab4ea unverified
raw
history blame
3.89 kB
import os
import sys
import io,time
from fastapi import FastAPI, Response, File, UploadFile, Form
from fastapi.responses import HTMLResponse
from contextlib import asynccontextmanager
ROOT_DIR = os.path.dirname(os.path.abspath(__file__))
sys.path.append('{}/../..'.format(ROOT_DIR))
sys.path.append('{}/../../third_party/Matcha-TTS'.format(ROOT_DIR))
from cosyvoice.cli.cosyvoice import CosyVoice
from cosyvoice.utils.file_utils import load_wav
import numpy as np
import torch
import torchaudio
import logging
logging.getLogger('matplotlib').setLevel(logging.WARNING)
class LaunchFailed(Exception):
pass
@asynccontextmanager
async def lifespan(app: FastAPI):
model_dir = os.getenv("MODEL_DIR", "pretrained_models/CosyVoice-300M-SFT")
if model_dir:
logging.info("MODEL_DIR is {}", model_dir)
app.cosyvoice = CosyVoice('../../'+model_dir)
# sft usage
logging.info("Avaliable speakers {}", app.cosyvoice.list_avaliable_spks())
else:
raise LaunchFailed("MODEL_DIR environment must set")
yield
app = FastAPI(lifespan=lifespan)
def buildResponse(output):
buffer = io.BytesIO()
torchaudio.save(buffer, output, 22050, format="wav")
buffer.seek(0)
return Response(content=buffer.read(-1), media_type="audio/wav")
@app.post("/api/inference/sft")
@app.get("/api/inference/sft")
async def sft(tts: str = Form(), role: str = Form()):
start = time.process_time()
output = app.cosyvoice.inference_sft(tts, role)
end = time.process_time()
logging.info("infer time is {} seconds", end-start)
return buildResponse(output['tts_speech'])
@app.post("/api/inference/zero-shot")
async def zeroShot(tts: str = Form(), prompt: str = Form(), audio: UploadFile = File()):
start = time.process_time()
prompt_speech = load_wav(audio.file, 16000)
prompt_audio = (prompt_speech.numpy() * (2**15)).astype(np.int16).tobytes()
prompt_speech_16k = torch.from_numpy(np.array(np.frombuffer(prompt_audio, dtype=np.int16))).unsqueeze(dim=0)
prompt_speech_16k = prompt_speech_16k.float() / (2**15)
output = app.cosyvoice.inference_zero_shot(tts, prompt, prompt_speech_16k)
end = time.process_time()
logging.info("infer time is {} seconds", end-start)
return buildResponse(output['tts_speech'])
@app.post("/api/inference/cross-lingual")
async def crossLingual(tts: str = Form(), audio: UploadFile = File()):
start = time.process_time()
prompt_speech = load_wav(audio.file, 16000)
prompt_audio = (prompt_speech.numpy() * (2**15)).astype(np.int16).tobytes()
prompt_speech_16k = torch.from_numpy(np.array(np.frombuffer(prompt_audio, dtype=np.int16))).unsqueeze(dim=0)
prompt_speech_16k = prompt_speech_16k.float() / (2**15)
output = app.cosyvoice.inference_cross_lingual(tts, prompt_speech_16k)
end = time.process_time()
logging.info("infer time is {} seconds", end-start)
return buildResponse(output['tts_speech'])
@app.post("/api/inference/instruct")
@app.get("/api/inference/instruct")
async def instruct(tts: str = Form(), role: str = Form(), instruct: str = Form()):
start = time.process_time()
output = app.cosyvoice.inference_instruct(tts, role, instruct)
end = time.process_time()
logging.info("infer time is {} seconds", end-start)
return buildResponse(output['tts_speech'])
@app.get("/api/roles")
async def roles():
return {"roles": app.cosyvoice.list_avaliable_spks()}
@app.get("/", response_class=HTMLResponse)
async def root():
return """
<!DOCTYPE html>
<html lang=zh-cn>
<head>
<meta charset=utf-8>
<title>Api information</title>
</head>
<body>
Get the supported tones from the Roles API first, then enter the tones and textual content in the TTS API for synthesis. <a href='./docs'>Documents of API</a>
</body>
</html>
"""