Spaces:
Running
on
Zero
Running
on
Zero
support upload audio
Browse files- main.py +0 -40
- runtime/python/fastapi_server.py +102 -0
main.py
DELETED
@@ -1,40 +0,0 @@
|
|
1 |
-
import io,time
|
2 |
-
from fastapi import FastAPI, Response
|
3 |
-
from fastapi.responses import HTMLResponse
|
4 |
-
from cosyvoice.cli.cosyvoice import CosyVoice
|
5 |
-
import torchaudio
|
6 |
-
|
7 |
-
cosyvoice = CosyVoice('pretrained_models/CosyVoice-300M-SFT')
|
8 |
-
# sft usage
|
9 |
-
print(cosyvoice.list_avaliable_spks())
|
10 |
-
app = FastAPI()
|
11 |
-
|
12 |
-
@app.get("/api/voice/tts")
|
13 |
-
async def tts(query: str, role: str):
|
14 |
-
start = time.process_time()
|
15 |
-
output = cosyvoice.inference_sft(query, role)
|
16 |
-
end = time.process_time()
|
17 |
-
print("infer time:", end-start, "seconds")
|
18 |
-
buffer = io.BytesIO()
|
19 |
-
torchaudio.save(buffer, output['tts_speech'], 22050, format="wav")
|
20 |
-
buffer.seek(0)
|
21 |
-
return Response(content=buffer.read(-1), media_type="audio/wav")
|
22 |
-
|
23 |
-
@app.get("/api/voice/roles")
|
24 |
-
async def roles():
|
25 |
-
return {"roles": cosyvoice.list_avaliable_spks()}
|
26 |
-
|
27 |
-
@app.get("/", response_class=HTMLResponse)
|
28 |
-
async def root():
|
29 |
-
return """
|
30 |
-
<!DOCTYPE html>
|
31 |
-
<html lang=zh-cn>
|
32 |
-
<head>
|
33 |
-
<meta charset=utf-8>
|
34 |
-
<title>Api information</title>
|
35 |
-
</head>
|
36 |
-
<body>
|
37 |
-
Get the supported tones from the Roles API first, then enter the tones and textual content in the TTS API for synthesis. <a href='./docs'>Documents of API</a>
|
38 |
-
</body>
|
39 |
-
</html>
|
40 |
-
"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
runtime/python/fastapi_server.py
ADDED
@@ -0,0 +1,102 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import sys
|
3 |
+
import io,time
|
4 |
+
from fastapi import FastAPI, Response, File, UploadFile, Form
|
5 |
+
from fastapi.responses import HTMLResponse
|
6 |
+
from contextlib import asynccontextmanager
|
7 |
+
ROOT_DIR = os.path.dirname(os.path.abspath(__file__))
|
8 |
+
sys.path.append('{}/../..'.format(ROOT_DIR))
|
9 |
+
sys.path.append('{}/../../third_party/Matcha-TTS'.format(ROOT_DIR))
|
10 |
+
from cosyvoice.cli.cosyvoice import CosyVoice
|
11 |
+
from cosyvoice.utils.file_utils import load_wav
|
12 |
+
import numpy as np
|
13 |
+
import torch
|
14 |
+
import torchaudio
|
15 |
+
import logging
|
16 |
+
logging.getLogger('matplotlib').setLevel(logging.WARNING)
|
17 |
+
|
18 |
+
class LaunchFailed(Exception):
|
19 |
+
pass
|
20 |
+
|
21 |
+
@asynccontextmanager
|
22 |
+
async def lifespan(app: FastAPI):
|
23 |
+
model_dir = os.getenv("MODEL_DIR", "pretrained_models/CosyVoice-300M-SFT")
|
24 |
+
if model_dir:
|
25 |
+
logging.info("MODEL_DIR is {}", model_dir)
|
26 |
+
app.cosyvoice = CosyVoice('../../'+model_dir)
|
27 |
+
# sft usage
|
28 |
+
logging.info("Avaliable speakers {}", app.cosyvoice.list_avaliable_spks())
|
29 |
+
else:
|
30 |
+
raise LaunchFailed("MODEL_DIR environment must set")
|
31 |
+
yield
|
32 |
+
|
33 |
+
app = FastAPI(lifespan=lifespan)
|
34 |
+
|
35 |
+
def buildResponse(output):
|
36 |
+
buffer = io.BytesIO()
|
37 |
+
torchaudio.save(buffer, output, 22050, format="wav")
|
38 |
+
buffer.seek(0)
|
39 |
+
return Response(content=buffer.read(-1), media_type="audio/wav")
|
40 |
+
|
41 |
+
@app.post("/api/inference/sft")
|
42 |
+
@app.get("/api/inference/sft")
|
43 |
+
async def sft(tts: str = Form(), role: str = Form()):
|
44 |
+
start = time.process_time()
|
45 |
+
output = app.cosyvoice.inference_sft(tts, role)
|
46 |
+
end = time.process_time()
|
47 |
+
logging.info("infer time is {} seconds", end-start)
|
48 |
+
return buildResponse(output['tts_speech'])
|
49 |
+
|
50 |
+
@app.post("/api/inference/zero-shot")
|
51 |
+
async def zeroShot(tts: str = Form(), prompt: str = Form(), audio: UploadFile = File()):
|
52 |
+
start = time.process_time()
|
53 |
+
prompt_speech = load_wav(audio.file, 16000)
|
54 |
+
prompt_audio = (prompt_speech.numpy() * (2**15)).astype(np.int16).tobytes()
|
55 |
+
prompt_speech_16k = torch.from_numpy(np.array(np.frombuffer(prompt_audio, dtype=np.int16))).unsqueeze(dim=0)
|
56 |
+
prompt_speech_16k = prompt_speech_16k.float() / (2**15)
|
57 |
+
|
58 |
+
output = app.cosyvoice.inference_zero_shot(tts, prompt, prompt_speech_16k)
|
59 |
+
end = time.process_time()
|
60 |
+
logging.info("infer time is {} seconds", end-start)
|
61 |
+
return buildResponse(output['tts_speech'])
|
62 |
+
|
63 |
+
@app.post("/api/inference/cross-lingual")
|
64 |
+
async def crossLingual(tts: str = Form(), audio: UploadFile = File()):
|
65 |
+
start = time.process_time()
|
66 |
+
prompt_speech = load_wav(audio.file, 16000)
|
67 |
+
prompt_audio = (prompt_speech.numpy() * (2**15)).astype(np.int16).tobytes()
|
68 |
+
prompt_speech_16k = torch.from_numpy(np.array(np.frombuffer(prompt_audio, dtype=np.int16))).unsqueeze(dim=0)
|
69 |
+
prompt_speech_16k = prompt_speech_16k.float() / (2**15)
|
70 |
+
|
71 |
+
output = app.cosyvoice.inference_cross_lingual(tts, prompt_speech_16k)
|
72 |
+
end = time.process_time()
|
73 |
+
logging.info("infer time is {} seconds", end-start)
|
74 |
+
return buildResponse(output['tts_speech'])
|
75 |
+
|
76 |
+
@app.post("/api/inference/instruct")
|
77 |
+
@app.get("/api/inference/instruct")
|
78 |
+
async def instruct(tts: str = Form(), role: str = Form(), instruct: str = Form()):
|
79 |
+
start = time.process_time()
|
80 |
+
output = app.cosyvoice.inference_instruct(tts, role, instruct)
|
81 |
+
end = time.process_time()
|
82 |
+
logging.info("infer time is {} seconds", end-start)
|
83 |
+
return buildResponse(output['tts_speech'])
|
84 |
+
|
85 |
+
@app.get("/api/roles")
|
86 |
+
async def roles():
|
87 |
+
return {"roles": app.cosyvoice.list_avaliable_spks()}
|
88 |
+
|
89 |
+
@app.get("/", response_class=HTMLResponse)
|
90 |
+
async def root():
|
91 |
+
return """
|
92 |
+
<!DOCTYPE html>
|
93 |
+
<html lang=zh-cn>
|
94 |
+
<head>
|
95 |
+
<meta charset=utf-8>
|
96 |
+
<title>Api information</title>
|
97 |
+
</head>
|
98 |
+
<body>
|
99 |
+
Get the supported tones from the Roles API first, then enter the tones and textual content in the TTS API for synthesis. <a href='./docs'>Documents of API</a>
|
100 |
+
</body>
|
101 |
+
</html>
|
102 |
+
"""
|