File size: 3,887 Bytes
a4ab4ea
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
import os
import sys
import io,time
from fastapi import FastAPI, Response, File, UploadFile, Form
from fastapi.responses import HTMLResponse
from contextlib import asynccontextmanager
ROOT_DIR = os.path.dirname(os.path.abspath(__file__))
sys.path.append('{}/../..'.format(ROOT_DIR))
sys.path.append('{}/../../third_party/Matcha-TTS'.format(ROOT_DIR))
from cosyvoice.cli.cosyvoice import CosyVoice
from cosyvoice.utils.file_utils import load_wav
import numpy as np
import torch
import torchaudio
import logging
logging.getLogger('matplotlib').setLevel(logging.WARNING)

class LaunchFailed(Exception):
    pass

@asynccontextmanager
async def lifespan(app: FastAPI):
    model_dir = os.getenv("MODEL_DIR", "pretrained_models/CosyVoice-300M-SFT")
    if model_dir:
        logging.info("MODEL_DIR is {}", model_dir)
        app.cosyvoice = CosyVoice('../../'+model_dir)
        # sft usage
        logging.info("Avaliable speakers {}", app.cosyvoice.list_avaliable_spks())
    else:
        raise LaunchFailed("MODEL_DIR environment must set")
    yield

app = FastAPI(lifespan=lifespan)

def buildResponse(output):
    buffer = io.BytesIO()
    torchaudio.save(buffer, output, 22050, format="wav")
    buffer.seek(0)
    return Response(content=buffer.read(-1), media_type="audio/wav")

@app.post("/api/inference/sft")
@app.get("/api/inference/sft")
async def sft(tts: str = Form(), role: str = Form()):
    start = time.process_time()
    output = app.cosyvoice.inference_sft(tts, role)
    end = time.process_time()
    logging.info("infer time is {} seconds", end-start)
    return buildResponse(output['tts_speech'])

@app.post("/api/inference/zero-shot")
async def zeroShot(tts: str = Form(), prompt: str = Form(), audio: UploadFile = File()):
    start = time.process_time()
    prompt_speech = load_wav(audio.file, 16000)
    prompt_audio = (prompt_speech.numpy() * (2**15)).astype(np.int16).tobytes()
    prompt_speech_16k = torch.from_numpy(np.array(np.frombuffer(prompt_audio, dtype=np.int16))).unsqueeze(dim=0)
    prompt_speech_16k = prompt_speech_16k.float() / (2**15)

    output = app.cosyvoice.inference_zero_shot(tts, prompt, prompt_speech_16k)
    end = time.process_time()
    logging.info("infer time is {} seconds", end-start)
    return buildResponse(output['tts_speech'])

@app.post("/api/inference/cross-lingual")
async def crossLingual(tts: str = Form(), audio: UploadFile = File()):
    start = time.process_time()
    prompt_speech = load_wav(audio.file, 16000)
    prompt_audio = (prompt_speech.numpy() * (2**15)).astype(np.int16).tobytes()
    prompt_speech_16k = torch.from_numpy(np.array(np.frombuffer(prompt_audio, dtype=np.int16))).unsqueeze(dim=0)
    prompt_speech_16k = prompt_speech_16k.float() / (2**15)

    output = app.cosyvoice.inference_cross_lingual(tts, prompt_speech_16k)
    end = time.process_time()
    logging.info("infer time is {} seconds", end-start)
    return buildResponse(output['tts_speech'])

@app.post("/api/inference/instruct")
@app.get("/api/inference/instruct")
async def instruct(tts: str = Form(), role: str = Form(), instruct: str = Form()):
    start = time.process_time()
    output = app.cosyvoice.inference_instruct(tts, role, instruct)
    end = time.process_time()
    logging.info("infer time is {} seconds", end-start)
    return buildResponse(output['tts_speech'])

@app.get("/api/roles")
async def roles():
    return {"roles": app.cosyvoice.list_avaliable_spks()}

@app.get("/", response_class=HTMLResponse)
async def root():
    return """
    <!DOCTYPE html>
    <html lang=zh-cn>
        <head>
            <meta charset=utf-8>
            <title>Api information</title>
        </head>
        <body>
            Get the supported tones from the Roles API first, then enter the tones and textual content in the TTS API for synthesis. <a href='./docs'>Documents of API</a>
        </body>
    </html>
    """