Spaces:
Sleeping
Sleeping
import pandas as pd | |
from pickle import load | |
from datetime import datetime, date | |
from sklearn.preprocessing import StandardScaler | |
import joblib | |
import json | |
import numpy as np | |
class EnergyPredictionPipeline: | |
scaler = None | |
def __init__( | |
self, scaler_path=None, wing="north", bootstrap_data: pd.DataFrame = None | |
): | |
if scaler_path: | |
self.scaler = self.get_scaler(scaler_path) | |
if wing == "north": | |
self.input_col_names = ["date", "hvac_N"] | |
elif wing == "south": | |
self.input_col_names = ["date", "hvac_S"] | |
self.df = bootstrap_data[self.input_col_names] | |
def get_scaler(self, scaler_path): | |
return joblib.load(scaler_path) | |
def transform_windows(self, df): | |
return self.scaler.transform(df) | |
def add_dimension(self, df): | |
return df.reshape((1, df.shape[0], df.shape[1])) | |
def convert_nan(self, df): | |
return np.nan_to_num(df) | |
def date_encoder(self, df): | |
df["day_of_week"] = df.index.dayofweek | |
df["hour_of_day"] = df.index.hour | |
df["month"] = df.index.month | |
df["day_encoding"] = np.sin(2 * np.pi * df["day_of_week"] / 7) | |
df["hour_encoding"] = np.sin(2 * np.pi * df["hour_of_day"] / 24) | |
df["month_encoding"] = np.sin(2 * np.pi * df["month"] / 12) | |
df.drop(columns=["day_of_week", "hour_of_day", "month"], inplace=True) | |
return df | |
def prepare_input(self, df1): | |
df = df1.copy() | |
df["date"] = pd.to_datetime(df["date"]) | |
df.set_index("date", inplace=True) | |
df = df.resample("60T").mean() | |
df = self.date_encoder(df) | |
df.reset_index(inplace=True, drop=True) | |
df = df.astype("float32") | |
df = df.iloc[-24 * 7 :] | |
return df | |
def extract_data_from_message(self, df): | |
df = df[self.input_col_names] | |
self.df = pd.concat([self.df, df], axis=0) | |
return self.df | |
def get_window(self, df): | |
time = df["date"].iloc[-1] | |
time = datetime.strptime(time, "%Y-%m-%d %H:%M:%S") | |
if time.minute == 0 & time.second == 0: | |
return df | |
else: | |
return None | |
def fit(self, message): | |
df_new = self.extract_data_from_message(message) | |
df_window = self.get_window(df_new) | |
if df_window is not None: | |
df = self.prepare_input(df_window) | |
df = self.transform_windows(df) | |
df = self.convert_nan(df) | |
df = self.add_dimension(df) | |
else: | |
df = None | |
return df | |