akshayballal commited on
Commit
d0f2767
·
1 Parent(s): f5e1991

Add pickle files for PCA, scaler, and k-means models

Browse files
dashboard.py CHANGED
@@ -1,4 +1,8 @@
1
  from collections import deque
 
 
 
 
2
  import streamlit as st
3
  import pandas as pd
4
  import numpy as np
@@ -13,39 +17,82 @@ rtu_data_pipeline = RTUPipeline(
13
  scaler1_path="src/rtu/models/scaler_rtu_1_2.pkl",
14
  scaler2_path="src/rtu/models/scaler_rtu_3_4.pkl",
15
  )
16
- rtu_anomalizer1 = RTUAnomalizer1(
17
- prediction_model_path="src/rtu/models/lstm_2rtu_smooth_04.keras",
18
- clustering_model_paths=[
19
- "src/rtu/models/kmeans_rtu_1.pkl",
20
- "src/rtu/models/kmeans_rtu_2.pkl",
21
- ],
22
- pca_model_paths=[
23
- "src/rtu/models/pca_rtu_1.pkl",
24
- "src/rtu/models/pca_rtu_2.pkl",
25
- ],
26
- num_inputs=rtu_data_pipeline.num_inputs,
27
- num_outputs=rtu_data_pipeline.num_outputs,
28
- )
29
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
30
 
31
- rtu_anomalizer2 = RTUAnomalizer1(
32
- prediction_model_path="src/rtu/models/lstm_2rtu_smooth_04.keras",
33
- clustering_model_paths=[
34
- "src/rtu/models/kmeans_rtu_1.pkl",
35
- "src/rtu/models/kmeans_rtu_2.pkl",
36
- ],
37
- pca_model_paths=[
38
- "src/rtu/models/pca_rtu_1.pkl",
39
- "src/rtu/models/pca_rtu_2.pkl",
40
- ],
41
- num_inputs=rtu_data_pipeline.num_inputs,
42
- num_outputs=rtu_data_pipeline.num_outputs,
 
 
43
  )
44
 
45
- rtu_1_thresholds = deque(maxlen=60)
46
- rtu_1_fault = False
47
- for i in range(60):
48
- rtu_1_thresholds.append(0)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
49
 
50
 
51
  # Set the layout of the page to 'wide'
@@ -107,10 +154,8 @@ for i in range(4):
107
  """,
108
  unsafe_allow_html=True,
109
  )
110
- placeholder["sa_temp"].markdown("**SA temp:** -- °C")
111
- placeholder["ra_temp"].markdown("**RA temp:** -- °C")
112
-
113
- all_data = []
114
 
115
 
116
  # Temperatures streaming and updates
@@ -118,8 +163,8 @@ def update_status_boxes(df):
118
  for i in range(4):
119
  sa_temp = df[f"rtu_00{i+1}_sa_temp"].iloc[-1]
120
  ra_temp = df[f"rtu_00{i+1}_ra_temp"].iloc[-1]
121
- rtu_placeholders[i]["sa_temp"].markdown(f"**SA temp:** {sa_temp} °C")
122
- rtu_placeholders[i]["ra_temp"].markdown(f"**RA temp:** {ra_temp} °C")
123
 
124
 
125
  # Zones
@@ -299,7 +344,7 @@ with st.container():
299
  distances = []
300
 
301
 
302
- def create_residual_plot(resid_pca_list, rtu_id):
303
  if rtu_id % 2 == 1:
304
  ax1 = 0
305
  ax2 = 1
@@ -314,8 +359,8 @@ def create_residual_plot(resid_pca_list, rtu_id):
314
  height=500,
315
  )
316
  fig.update_layout(
317
- xaxis_range=[-8, 8],
318
- yaxis_range=[-8, 8],
319
  xaxis=dict(showgrid=True, gridwidth=1, gridcolor="lightgray"),
320
  yaxis=dict(showgrid=True, gridwidth=1, gridcolor="lightgray"),
321
  margin=dict(l=20, r=20, t=20, b=20),
@@ -334,17 +379,16 @@ def create_residual_plot(resid_pca_list, rtu_id):
334
 
335
  resid_placeholder = st.empty()
336
 
 
337
 
338
  while True:
339
 
340
  if mqtt_client.data_list:
341
- all_data.extend(mqtt_client.data_list)
342
- if len(all_data) > 100:
343
- all_data.pop(0)
344
- df = pd.DataFrame(all_data)
345
 
346
- if sum(list(rtu_1_thresholds)) > 50:
347
- rtu_1_fault = True
348
 
349
  df_time = df["date"].iloc[-1] # Obtain the latest datetime of data
350
 
@@ -360,59 +404,94 @@ while True:
360
  update_status_boxes(df)
361
 
362
  dist = None
363
- resid_pca_list = None
364
- resid_pca_list_2 = None
 
365
 
366
  df_new1, df_trans1, df_new2, df_trans2 = rtu_data_pipeline.fit(
367
  pd.DataFrame(mqtt_client.data_list)
368
  )
 
 
 
 
 
 
 
369
  if (
370
  not df_new1 is None
371
  and not df_trans1 is None
372
  and not df_new2 is None
373
  and not df_trans2 is None
374
  ):
375
- actual_list, pred_list, resid_list, resid_pca_list, dist, over_threshold = (
376
- rtu_anomalizer1.pipeline(df_new1, df_trans1, rtu_data_pipeline.scaler1)
 
 
 
 
 
 
 
377
  )
378
  (
379
  actual_list_2,
380
  pred_list_2,
381
  resid_list_2,
382
- resid_pca_list_2,
383
  dist_2,
384
  over_threshold_2,
385
- ) = rtu_anomalizer1.pipeline(df_new1, df_trans1, rtu_data_pipeline.scaler1)
 
 
 
 
 
 
 
 
 
 
 
 
386
 
387
- if resid_pca_list is not None:
388
- rtu_1_thresholds.append(over_threshold[0])
389
- resid_pca_list = np.array(resid_pca_list)
390
- resid_pca_list_2 = np.array(resid_pca_list_2)
391
 
392
- if resid_pca_list is not None:
393
  with resid_placeholder.container():
394
  resid_rtu1_placeholder, resid_rtu2_placeholder = st.columns(2)
395
  with resid_rtu1_placeholder:
396
  st.subheader("RTU 1 Residuals")
397
- fig = create_residual_plot(resid_pca_list, rtu_id=1)
398
  st.plotly_chart(fig)
399
 
400
  with resid_rtu2_placeholder:
401
  st.subheader("RTU 2 Residuals")
402
- fig = create_residual_plot(resid_pca_list, rtu_id=2)
403
  st.plotly_chart(fig)
404
 
405
  resid_rtu3_placeholder, resid_rtu4_placeholder = st.columns(2)
406
  with resid_rtu3_placeholder:
407
  st.subheader("RTU 3 Residuals")
408
- fig = create_residual_plot(resid_pca_list, rtu_id=3)
409
  st.plotly_chart(fig)
410
 
411
  with resid_rtu4_placeholder:
412
  st.subheader("RTU 4 Residuals")
413
- fig = create_residual_plot(resid_pca_list, rtu_id=4)
414
  st.plotly_chart(fig)
415
 
 
 
 
 
 
 
 
 
 
416
  # with north_wing_energy_container:
417
  # df_energy = generate_energy_data() # ---- REPLACE WITH ACTUAL DATA ----
418
  # fig, ax = plt.subplots(figsize=(5, 1.5))
 
1
  from collections import deque
2
+ from src.energy_prediction.EnergyPredictionModel import EnergyPredictionModel
3
+ from src.energy_prediction.EnergyPredictionPipeline import EnergyPredictionPipeline
4
+ from src.vav.VAVAnomalizer import VAVAnomalizer
5
+ from src.vav.VAVPipeline import VAVPipeline
6
  import streamlit as st
7
  import pandas as pd
8
  import numpy as np
 
17
  scaler1_path="src/rtu/models/scaler_rtu_1_2.pkl",
18
  scaler2_path="src/rtu/models/scaler_rtu_3_4.pkl",
19
  )
 
 
 
 
 
 
 
 
 
 
 
 
 
20
 
21
+ rtu_anomalizers = []
22
+
23
+
24
+ rtu_anomalizers.append(
25
+ RTUAnomalizer1(
26
+ prediction_model_path="src/rtu/models/lstm_2rtu_smooth_04.keras",
27
+ clustering_model_paths=[
28
+ "src/rtu/models/kmeans_rtu_1.pkl",
29
+ "src/rtu/models/kmeans_rtu_2.pkl",
30
+ ],
31
+ pca_model_paths=[
32
+ "src/rtu/models/pca_rtu_1.pkl",
33
+ "src/rtu/models/pca_rtu_2.pkl",
34
+ ],
35
+ num_inputs=rtu_data_pipeline.num_inputs,
36
+ num_outputs=rtu_data_pipeline.num_outputs,
37
+ )
38
+ )
39
 
40
+ rtu_anomalizers.append(
41
+ RTUAnomalizer1(
42
+ prediction_model_path="src/rtu/models/lstm_2rtu_smooth_04.keras",
43
+ clustering_model_paths=[
44
+ "src/rtu/models/kmeans_rtu_1.pkl",
45
+ "src/rtu/models/kmeans_rtu_2.pkl",
46
+ ],
47
+ pca_model_paths=[
48
+ "src/rtu/models/pca_rtu_1.pkl",
49
+ "src/rtu/models/pca_rtu_2.pkl",
50
+ ],
51
+ num_inputs=rtu_data_pipeline.num_inputs,
52
+ num_outputs=rtu_data_pipeline.num_outputs,
53
+ )
54
  )
55
 
56
+ vav_pipelines = []
57
+ vav_anomalizers = []
58
+ for i in range(1, 2):
59
+ vav_pipelines.append(
60
+ VAVPipeline(rtu_id=i, scaler_path=f"src/vav/models/scaler_vav_{i}.pkl")
61
+ )
62
+
63
+ for i in range(1, 2):
64
+ vav_anomalizers.append(
65
+ VAVAnomalizer(
66
+ rtu_id=i,
67
+ prediction_model_path=f"src/vav/models/lstm_vav_0{i}.keras",
68
+ clustering_model_path=f"src/vav/models/kmeans_vav_{i}.pkl",
69
+ pca_model_path=f"src/vav/models/pca_vav_{i}.pkl",
70
+ num_inputs=vav_pipelines[i - 1].num_inputs,
71
+ num_outputs=vav_pipelines[i - 1].num_outputs,
72
+ )
73
+ )
74
+
75
+
76
+ all_data = pd.read_csv("data/bootstrap_data.csv")
77
+
78
+ # energy_pipeline_north = EnergyPredictionPipeline(
79
+ # scaler_path="src/energy_prediction/models/scalerNorth.pkl",
80
+ # wing="north",
81
+ # bootstrap_data=all_data,
82
+ # )
83
+ # energy_pipeline_south = EnergyPredictionPipeline(
84
+ # scaler_path="src/energy_prediction/models/scalerSouth.pkl",
85
+ # wing="south",
86
+ # bootstrap_data=all_data,
87
+ # )
88
+
89
+ # energy_prediction_model_north = EnergyPredictionModel(
90
+ # model_path=r"src/energy_prediction/models/lstm_energy_north_01.keras"
91
+ # )
92
+
93
+ # energy_prediction_model_south = EnergyPredictionModel(
94
+ # model_path=r"src/energy_prediction/models/lstm_energy_south_01.keras"
95
+ # )
96
 
97
 
98
  # Set the layout of the page to 'wide'
 
154
  """,
155
  unsafe_allow_html=True,
156
  )
157
+ placeholder["sa_temp"].markdown("**SA temp:** -- °F")
158
+ placeholder["ra_temp"].markdown("**RA temp:** -- °F")
 
 
159
 
160
 
161
  # Temperatures streaming and updates
 
163
  for i in range(4):
164
  sa_temp = df[f"rtu_00{i+1}_sa_temp"].iloc[-1]
165
  ra_temp = df[f"rtu_00{i+1}_ra_temp"].iloc[-1]
166
+ rtu_placeholders[i]["sa_temp"].markdown(f"**SA temp:** {sa_temp} °F")
167
+ rtu_placeholders[i]["ra_temp"].markdown(f"**RA temp:** {ra_temp} °F")
168
 
169
 
170
  # Zones
 
344
  distances = []
345
 
346
 
347
+ def create_residual_plot(resid_pca_list, rtu_id, lim=8):
348
  if rtu_id % 2 == 1:
349
  ax1 = 0
350
  ax2 = 1
 
359
  height=500,
360
  )
361
  fig.update_layout(
362
+ xaxis_range=[-lim, lim],
363
+ yaxis_range=[-lim, lim],
364
  xaxis=dict(showgrid=True, gridwidth=1, gridcolor="lightgray"),
365
  yaxis=dict(showgrid=True, gridwidth=1, gridcolor="lightgray"),
366
  margin=dict(l=20, r=20, t=20, b=20),
 
379
 
380
  resid_placeholder = st.empty()
381
 
382
+ resid_vav_placeholder = st.empty()
383
 
384
  while True:
385
 
386
  if mqtt_client.data_list:
387
+ all_data = pd.concat([all_data, pd.DataFrame(mqtt_client.data_list)], axis=0)
388
+ if len(all_data) > 10080:
389
+ all_data = all_data.iloc[-10080:]
 
390
 
391
+ df = pd.DataFrame(all_data)
 
392
 
393
  df_time = df["date"].iloc[-1] # Obtain the latest datetime of data
394
 
 
404
  update_status_boxes(df)
405
 
406
  dist = None
407
+ resid_pca_list_rtu = None
408
+ resid_pca_list_rtu_2 = None
409
+ resid_pca_list_vav_1 = None
410
 
411
  df_new1, df_trans1, df_new2, df_trans2 = rtu_data_pipeline.fit(
412
  pd.DataFrame(mqtt_client.data_list)
413
  )
414
+
415
+ vav_1_df_new, vav_1_df_trans = vav_pipelines[0].fit(
416
+ pd.DataFrame(mqtt_client.data_list)
417
+ )
418
+ vav_anomalizers[0].num_inputs = vav_pipelines[0].num_inputs
419
+ vav_anomalizers[0].num_outputs = vav_pipelines[0].num_outputs
420
+
421
  if (
422
  not df_new1 is None
423
  and not df_trans1 is None
424
  and not df_new2 is None
425
  and not df_trans2 is None
426
  ):
427
+ (
428
+ actual_list,
429
+ pred_list,
430
+ resid_list,
431
+ resid_pca_list_rtu,
432
+ dist,
433
+ over_threshold,
434
+ ) = rtu_anomalizers[0].pipeline(
435
+ df_new1, df_trans1, rtu_data_pipeline.scaler1
436
  )
437
  (
438
  actual_list_2,
439
  pred_list_2,
440
  resid_list_2,
441
+ resid_pca_list_rtu_2,
442
  dist_2,
443
  over_threshold_2,
444
+ ) = rtu_anomalizers[1].pipeline(
445
+ df_new1, df_trans1, rtu_data_pipeline.scaler1
446
+ )
447
+ if not vav_1_df_new is None:
448
+ (
449
+ actual_list_vav_1,
450
+ pred_list_vav_1,
451
+ resid_list_vav_1,
452
+ resid_pca_list_vav_1,
453
+ dist_vav_1,
454
+ ) = vav_anomalizers[0].pipeline(
455
+ vav_1_df_new, vav_1_df_trans, vav_pipelines[0].scaler
456
+ )
457
 
458
+ if resid_pca_list_rtu is not None:
459
+ resid_pca_list_rtu = np.array(resid_pca_list_rtu)
460
+ resid_pca_list_rtu_2 = np.array(resid_pca_list_rtu_2)
 
461
 
462
+ if resid_pca_list_rtu is not None:
463
  with resid_placeholder.container():
464
  resid_rtu1_placeholder, resid_rtu2_placeholder = st.columns(2)
465
  with resid_rtu1_placeholder:
466
  st.subheader("RTU 1 Residuals")
467
+ fig = create_residual_plot(resid_pca_list_rtu, rtu_id=1)
468
  st.plotly_chart(fig)
469
 
470
  with resid_rtu2_placeholder:
471
  st.subheader("RTU 2 Residuals")
472
+ fig = create_residual_plot(resid_pca_list_rtu, rtu_id=2)
473
  st.plotly_chart(fig)
474
 
475
  resid_rtu3_placeholder, resid_rtu4_placeholder = st.columns(2)
476
  with resid_rtu3_placeholder:
477
  st.subheader("RTU 3 Residuals")
478
+ fig = create_residual_plot(resid_pca_list_rtu, rtu_id=3)
479
  st.plotly_chart(fig)
480
 
481
  with resid_rtu4_placeholder:
482
  st.subheader("RTU 4 Residuals")
483
+ fig = create_residual_plot(resid_pca_list_rtu, rtu_id=4)
484
  st.plotly_chart(fig)
485
 
486
+ if resid_pca_list_vav_1 is not None:
487
+ print(resid_pca_list_vav_1)
488
+ with resid_vav_placeholder.container():
489
+ st.subheader("VAV 1 Residuals")
490
+ fig = create_residual_plot(
491
+ np.array(resid_pca_list_vav_1), rtu_id=1, lim=15
492
+ )
493
+ st.plotly_chart(fig)
494
+
495
  # with north_wing_energy_container:
496
  # df_energy = generate_energy_data() # ---- REPLACE WITH ACTUAL DATA ----
497
  # fig, ax = plt.subplots(figsize=(5, 1.5))
mqttpublisher.ipynb CHANGED
The diff for this file is too large to render. See raw diff
 
physLSTM/kmeans_vav_2.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:eac01ceecdae11713ee21462a8bd3dc7ea32e740c3daa42795b266a05e7c424a
3
+ size 1567961
physLSTM/lstm_vav_rtu1.ipynb CHANGED
@@ -334,7 +334,7 @@
334
  "\n",
335
  "checkpoint_path = \"lstm_vav_01.keras\"\n",
336
  "checkpoint_callback = ModelCheckpoint(filepath=checkpoint_path, monitor='val_loss', verbose=1, save_best_only=True, mode='min')\n",
337
- "model.fit(X_train, y_train, validation_data=(X_test, y_test), epochs=3, batch_size=128, verbose=1, callbacks=[checkpoint_callback])"
338
  ]
339
  },
340
  {
@@ -450,26 +450,45 @@
450
  "idx_to_col"
451
  ]
452
  },
 
 
 
 
 
 
 
 
 
 
453
  {
454
  "cell_type": "code",
455
  "execution_count": 84,
456
  "metadata": {},
457
  "outputs": [],
458
  "source": [
459
- "%matplotlib qt\n",
460
- "plt.figure()\n",
461
- "var = 10\n",
462
- "plt.plot(y_test[:,var], label='Original Testing Data', color='blue')\n",
463
- "plt.plot(test_predict1[:,var], label='Predicted Testing Data', color='red',alpha=0.8)\n",
464
- "anomalies = np.where(abs(test_predict1[:,var] - y_test[:,var]) > 0.5)\n",
465
- "plt.scatter(anomalies,test_predict1[anomalies,var], color='black',marker =\"o\",s=100 )\n",
466
- "\n",
467
- "\n",
468
- "plt.title('Testing Data - Predicted vs Actual')\n",
469
- "plt.xlabel('Time')\n",
470
- "plt.ylabel('Value')\n",
471
- "plt.legend()\n",
472
- "plt.show()"
 
 
 
 
 
 
 
 
 
473
  ]
474
  },
475
  {
@@ -538,30 +557,32 @@
538
  "\n",
539
  "k = 2\n",
540
  "\n",
 
 
 
541
  "kmeans = KMeans(n_clusters=k)\n",
542
  "\n",
543
  "kmeans.fit(X)\n",
544
  "\n",
545
  "\n",
546
- "pca = PCA(n_components=2)\n",
547
- "X = pca.fit_transform(X)\n",
548
- "\n",
549
- "\n",
550
  "\n",
551
  "# Getting the cluster centers and labels\n",
552
  "centroids = kmeans.cluster_centers_\n",
553
- "centroids = pca.transform(centroids)\n",
554
  "labels = kmeans.labels_\n",
555
  "\n",
556
  "# Plotting the data points and cluster centers\n",
557
  "plt.scatter(X[:, 0], X[:, 1], c=labels, cmap='viridis', alpha=0.5)\n",
558
  "plt.scatter(centroids[:, 0], centroids[:, 1], marker='x', c='red', s=200, linewidths=2)\n",
 
 
559
  "plt.title('KMeans Clustering')\n",
560
  "plt.xlabel('Feature 1')\n",
561
  "plt.ylabel('Feature 2')\n",
562
- "plt.show()\n",
563
  "\n",
564
- "joblib.dump(kmeans, 'kmeans_vav_1.pkl')"
 
565
  ]
566
  },
567
  {
 
334
  "\n",
335
  "checkpoint_path = \"lstm_vav_01.keras\"\n",
336
  "checkpoint_callback = ModelCheckpoint(filepath=checkpoint_path, monitor='val_loss', verbose=1, save_best_only=True, mode='min')\n",
337
+ "# model.fit(X_train, y_train, validation_data=(X_test, y_test), epochs=3, batch_size=128, verbose=1, callbacks=[checkpoint_callback])"
338
  ]
339
  },
340
  {
 
450
  "idx_to_col"
451
  ]
452
  },
453
+ {
454
+ "cell_type": "code",
455
+ "execution_count": null,
456
+ "metadata": {},
457
+ "outputs": [],
458
+ "source": [
459
+ "test_predict1_unscaled = test_predict1*scaler.scale_[0:31] + scaler.mean_[0:31]\n",
460
+ "y_test_unscaled = y_test*scaler.scale_[0:31] + scaler.mean_[0:31]"
461
+ ]
462
+ },
463
  {
464
  "cell_type": "code",
465
  "execution_count": 84,
466
  "metadata": {},
467
  "outputs": [],
468
  "source": [
469
+ "%matplotlib inline\n",
470
+ "var = 0\n",
471
+ "\n",
472
+ "df = pd.DataFrame([testdataset_df.index[31:],test_predict1_unscaled[:,var], y_test_unscaled[:,var]] ).T\n",
473
+ "fig, ax = plt.subplots(figsize=(10,8))\n",
474
+ "df.plot(x = 0, y=1, ax = ax, label = 'Predicted')\n",
475
+ "df.plot(x = 0, y=2, ax = ax, label = 'Actual')\n",
476
+ "\n",
477
+ "anomalies = df.where(df[1]-df[2]>0.38)[0]\n",
478
+ "df['anomalies'] = anomalies\n",
479
+ "\n",
480
+ "df_new = df.dropna()\n",
481
+ "\n",
482
+ "df_new.plot.scatter(x='anomalies', y=1, c='r', ax = ax, label = 'Anomalies')\n",
483
+ "\n",
484
+ "# ax.scatter(anomalies,test_predict1[anomalies,var], color='black',marker =\"o\",s=100 )\n",
485
+ "\n",
486
+ "\n",
487
+ "ax.set_title('Testing Data - Predicted vs Actual [Zone 72 Temperature]', fontsize=20)\n",
488
+ "ax.set_xlabel('Time', fontsize=15)\n",
489
+ "ax.set_ylabel('Value', fontsize = 15)\n",
490
+ "ax.legend(fontsize = 15)\n",
491
+ "fig.tight_layout()"
492
  ]
493
  },
494
  {
 
557
  "\n",
558
  "k = 2\n",
559
  "\n",
560
+ "pca = PCA(n_components=2)\n",
561
+ "X = pca.fit_transform(X)\n",
562
+ "\n",
563
  "kmeans = KMeans(n_clusters=k)\n",
564
  "\n",
565
  "kmeans.fit(X)\n",
566
  "\n",
567
  "\n",
 
 
 
 
568
  "\n",
569
  "# Getting the cluster centers and labels\n",
570
  "centroids = kmeans.cluster_centers_\n",
571
+ "# centroids = pca.transform(centroids)\n",
572
  "labels = kmeans.labels_\n",
573
  "\n",
574
  "# Plotting the data points and cluster centers\n",
575
  "plt.scatter(X[:, 0], X[:, 1], c=labels, cmap='viridis', alpha=0.5)\n",
576
  "plt.scatter(centroids[:, 0], centroids[:, 1], marker='x', c='red', s=200, linewidths=2)\n",
577
+ "plt.text(centroids[0,0]+0.2, centroids[0,1]+0.5, 'Normal', fontsize=12, color='red')\n",
578
+ "plt.text(centroids[1,0]+0.5, centroids[1,1]+0.2, 'Anomaly', fontsize=12, color='red')\n",
579
  "plt.title('KMeans Clustering')\n",
580
  "plt.xlabel('Feature 1')\n",
581
  "plt.ylabel('Feature 2')\n",
582
+ "plt.tight_layout()\n",
583
  "\n",
584
+ "joblib.dump(kmeans, 'kmeans_vav_2.pkl')\n",
585
+ "joblib.dump(pca, 'pca_vav_2.pkl')"
586
  ]
587
  },
588
  {
physLSTM/lstm_vav_rtu2.ipynb CHANGED
The diff for this file is too large to render. See raw diff
 
physLSTM/pca_vav_2.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:00484ce0c76fc9df1f8f119325a12ec7be5baf8879d4ac192448b2d7ba397c7e
3
+ size 1323
physLSTM/scaler_vav_1.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:293ee3c9082e7104dfc96425cecad2a44e5914bbd1f43c25a0fd8c36507b103a
3
+ size 1925
src/energy_prediction/{EnergyPredictionNorth.py → EnergyPredictionModel.py} RENAMED
@@ -2,13 +2,13 @@ import numpy as np
2
  import pandas as pd
3
  from tensorflow.keras.models import load_model
4
 
5
- class EnergyPredictionNorth:
 
6
  """
7
  Class for predicting energy consumption in the north wing of the building.
8
  """
9
 
10
- def __init__(self,
11
- model_path=None):
12
  """
13
  Initialize the EnergyPredictionNorth object.
14
 
@@ -38,15 +38,14 @@ class EnergyPredictionNorth:
38
  np.ndarray: Predicted energy consumption values.
39
  """
40
  return self.model.predict(data, verbose=0)
41
-
42
- def inverse_transform(self, scaler, pred, df_trans):
43
  """
44
  Inverse transform the predicted and actual values.
45
 
46
  Args:
47
  scaler (object): Scaler object for inverse transformation.
48
  pred (array): Predicted values.
49
- df_trans (DataFrame): Transformed input data.
50
 
51
  Returns:
52
  tuple: A tuple containing the actual and predicted values after inverse transformation.
@@ -54,6 +53,23 @@ class EnergyPredictionNorth:
54
  mean = scaler.mean_[0]
55
  std = scaler.scale_[0]
56
 
57
- pred = pred * std + mean
58
- actual = df_trans[:,0] * std + mean
59
- return actual, pred
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2
  import pandas as pd
3
  from tensorflow.keras.models import load_model
4
 
5
+
6
+ class EnergyPredictionModel:
7
  """
8
  Class for predicting energy consumption in the north wing of the building.
9
  """
10
 
11
+ def __init__(self, model_path=None):
 
12
  """
13
  Initialize the EnergyPredictionNorth object.
14
 
 
38
  np.ndarray: Predicted energy consumption values.
39
  """
40
  return self.model.predict(data, verbose=0)
41
+
42
+ def inverse_transform(self, scaler, pred):
43
  """
44
  Inverse transform the predicted and actual values.
45
 
46
  Args:
47
  scaler (object): Scaler object for inverse transformation.
48
  pred (array): Predicted values.
 
49
 
50
  Returns:
51
  tuple: A tuple containing the actual and predicted values after inverse transformation.
 
53
  mean = scaler.mean_[0]
54
  std = scaler.scale_[0]
55
 
56
+ pred = pred * std + mean
57
+ # actual = df_trans[:,0] * std + mean
58
+ return pred
59
+
60
+ def pipeline(self, data, scaler):
61
+ """
62
+ Run the prediction pipeline.
63
+
64
+ Args:
65
+ df (pd.DataFrame): Input data for prediction.
66
+ scaler (object): Scaler object for inverse transformation.
67
+
68
+ Returns:
69
+ tuple: A tuple containing the actual and predicted values after inverse transformation.
70
+ """
71
+
72
+ pred = self.predict(data)
73
+ pred_scaled = self.inverse_transform(scaler, pred)
74
+
75
+ return pred_scaled
src/energy_prediction/EnergyPredictionPipeline.py CHANGED
@@ -6,78 +6,89 @@ import joblib
6
  import json
7
  import numpy as np
8
 
 
9
  class EnergyPredictionPipeline:
10
- scalerNorth = None
11
- scalerSouth = None
12
-
13
- def __init__(self, scaler1_path=None,scaler2_path=None):
14
-
15
- if scaler1_path:
16
- self.scalerNorth = self.get_scaler(scaler1_path)
17
- if scaler2_path:
18
- self.scalerSouth = self.get_scaler(scaler2_path)
19
-
20
- self.input_col_names = self.input_col_names + [
21
- "date",
22
- "hvac_N"
23
- ]
24
-
 
25
  def get_scaler(self, scaler_path):
26
  return joblib.load(scaler_path)
27
-
28
  def transform_windows(self, df):
29
- return self.scalerNorth.transform(df)
 
 
 
 
 
 
 
 
30
 
31
- def date_encoder(df):
 
 
32
 
33
- df['day_of_week'] = df.index.dayofweek
34
- df['hour_of_day'] = df.index.hour
35
- df['month'] = df.index.month
36
 
37
- df['day_encoding'] = np.sin(2*np.pi*df['day_of_week']/7)
38
- df['hour_encoding'] = np.sin(2*np.pi*df['hour_of_day']/24)
39
- df['month_encoding'] = np.sin(2*np.pi*df['month']/12)
40
 
41
  return df
42
-
43
- def prepare_input(self, df_new):
44
-
45
- df = df_new.copy()
46
  df["date"] = pd.to_datetime(df["date"])
47
  df.set_index("date", inplace=True)
48
- df = df.resample("H").mean()
49
-
50
  df = self.date_encoder(df)
51
-
52
  df.reset_index(inplace=True, drop=True)
 
 
53
 
54
  return df
55
-
56
- def extract_data_from_message(self, message):
57
- payload = json.loads(message.payload.decode())
58
 
59
- len_df = len(self.df)
 
 
60
 
61
- k = {}
62
- for col in self.input_col_names:
63
- k[col] = payload[col]
64
- self.df.loc[len_df] = k
65
  return self.df
66
-
67
  def get_window(self, df):
68
- len_df = len(df)
69
- print(len_df)
70
- if len_df > 4*7*24:
71
- return df[len_df - 673 : len_df].astype("float32")
 
 
72
  else:
73
  return None
74
-
75
  def fit(self, message):
76
- df_new = self.extract_data_from_message(message)
77
- df_window = self.get_window(df_new)
78
  if df_window is not None:
79
  df = self.prepare_input(df_window)
80
  df = self.transform_windows(df)
 
 
 
81
  else:
82
  df = None
83
- return df
 
 
6
  import json
7
  import numpy as np
8
 
9
+
10
  class EnergyPredictionPipeline:
11
+ scaler = None
12
+
13
+ def __init__(
14
+ self, scaler_path=None, wing="north", bootstrap_data: pd.DataFrame = None
15
+ ):
16
+
17
+ if scaler_path:
18
+ self.scaler = self.get_scaler(scaler_path)
19
+
20
+ if wing == "north":
21
+ self.input_col_names = ["date", "hvac_N"]
22
+ elif wing == "south":
23
+ self.input_col_names = ["date", "hvac_S"]
24
+
25
+ self.df = bootstrap_data[self.input_col_names]
26
+
27
  def get_scaler(self, scaler_path):
28
  return joblib.load(scaler_path)
29
+
30
  def transform_windows(self, df):
31
+ return self.scaler.transform(df)
32
+
33
+ def add_dimension(self, df):
34
+ return df.reshape((1, df.shape[0], df.shape[1]))
35
+
36
+ def convert_nan(self, df):
37
+ return np.nan_to_num(df)
38
+
39
+ def date_encoder(self, df):
40
 
41
+ df["day_of_week"] = df.index.dayofweek
42
+ df["hour_of_day"] = df.index.hour
43
+ df["month"] = df.index.month
44
 
45
+ df["day_encoding"] = np.sin(2 * np.pi * df["day_of_week"] / 7)
46
+ df["hour_encoding"] = np.sin(2 * np.pi * df["hour_of_day"] / 24)
47
+ df["month_encoding"] = np.sin(2 * np.pi * df["month"] / 12)
48
 
49
+ df.drop(columns=["day_of_week", "hour_of_day", "month"], inplace=True)
 
 
50
 
51
  return df
52
+
53
+ def prepare_input(self, df1):
54
+
55
+ df = df1.copy()
56
  df["date"] = pd.to_datetime(df["date"])
57
  df.set_index("date", inplace=True)
58
+ df = df.resample("60T").mean()
 
59
  df = self.date_encoder(df)
 
60
  df.reset_index(inplace=True, drop=True)
61
+ df = df.astype("float32")
62
+ df = df.iloc[-24 * 7 :]
63
 
64
  return df
 
 
 
65
 
66
+ def extract_data_from_message(self, df):
67
+ df = df[self.input_col_names]
68
+ self.df = pd.concat([self.df, df], axis=0)
69
 
 
 
 
 
70
  return self.df
71
+
72
  def get_window(self, df):
73
+
74
+ time = df["date"].iloc[-1]
75
+ time = datetime.strptime(time, "%Y-%m-%d %H:%M:%S")
76
+
77
+ if time.minute == 0 & time.second == 0:
78
+ return df
79
  else:
80
  return None
81
+
82
  def fit(self, message):
83
+ df_new = self.extract_data_from_message(message)
84
+ df_window = self.get_window(df_new)
85
  if df_window is not None:
86
  df = self.prepare_input(df_window)
87
  df = self.transform_windows(df)
88
+ df = self.convert_nan(df)
89
+ df = self.add_dimension(df)
90
+
91
  else:
92
  df = None
93
+
94
+ return df
src/energy_prediction/EnergyPredictionSouth.py DELETED
File without changes
src/energy_prediction/models/lstm_energy_south_01.keras ADDED
Binary file (430 kB). View file
 
src/energy_prediction/models/scalerSouth.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:28b4ee66e0160ad1c033e33728ea5b349a168c9070fa6e813184c63dd7ba3e52
3
+ size 689
src/energy_prediction/test_main.py ADDED
@@ -0,0 +1,43 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from energy_prediction.EnergyPredictionModel import EnergyPredictionModel
2
+ from energy_prediction.EnergyPredictionPipeline import EnergyPredictionPipeline
3
+ import paho.mqtt.client as mqtt
4
+ import json
5
+
6
+ broker_address = "localhost"
7
+ broker_port = 1883
8
+ topic = "sensor_data"
9
+ client = mqtt.Client(mqtt.CallbackAPIVersion.VERSION2)
10
+
11
+ def main():
12
+ prediction_data_pipeline_north = EnergyPredictionPipeline(scaler_path="src\energy_prediction\models\scalerNorth.pkl", wing='north')
13
+ prediction_data_pipeline_south = EnergyPredictionPipeline(scaler_path="src\energy_prediction\models\scalerSouth.pkl", wing='south')
14
+
15
+ # Energy Prediction North wing
16
+ energy_prediction_north = EnergyPredictionModel(
17
+ model_path="src/energy_prediction/models/lstm_energy_north_01.keras"
18
+ )
19
+ # Energy Prediction South wing
20
+ energy_prediction_south = EnergyPredictionModel(
21
+ model_path="src/energy_prediction/models/lstm_energy_south_01.keras"
22
+ )
23
+
24
+ def on_message(client, userdata, message):
25
+ dfN = prediction_data_pipeline_north.fit(message)
26
+ dfS = prediction_data_pipeline_south.fit(message)
27
+
28
+ if not(dfN is None and dfS is None):
29
+ outN = energy_prediction_north.pipeline(dfN, prediction_data_pipeline_north.scaler)
30
+ outS = energy_prediction_south.pipeline(dfS, prediction_data_pipeline_south.scaler)
31
+ return outN, outS
32
+ else:
33
+ return None
34
+
35
+ print("Connecting to broker")
36
+ client.on_message = on_message
37
+ client.connect(broker_address, broker_port)
38
+ client.subscribe(topic)
39
+ client.loop_forever()
40
+
41
+ if __name__ == "__main__":
42
+ main()
43
+
src/vav/VAVAnomalizer.py CHANGED
@@ -1,4 +1,6 @@
1
  import numpy as np
 
 
2
  from tensorflow.keras.models import load_model
3
  import joblib
4
 
@@ -9,6 +11,7 @@ class VAVAnomalizer:
9
  rtu_id,
10
  prediction_model_path,
11
  clustering_model_path,
 
12
  num_inputs,
13
  num_outputs,
14
  ):
@@ -18,6 +21,7 @@ class VAVAnomalizer:
18
  Args:
19
  rtu_id (int): The ID of the RTU (Roof Top Unit) associated with the VAV (Variable Air Volume) system.
20
  prediction_model_path (str): The file path to the prediction model.
 
21
  clustering_model_path (str): The file path to the clustering model.
22
  num_inputs (int): The number of input features for the prediction model.
23
  num_outputs (int): The number of output features for the prediction model.
@@ -25,18 +29,23 @@ class VAVAnomalizer:
25
  self.rtu_id = rtu_id
26
  self.num_inputs = num_inputs
27
  self.num_outputs = num_outputs
28
- self.load_models(prediction_model_path, clustering_model_path)
 
 
 
29
 
30
- def load_models(self, prediction_model_path, clustering_model_path):
31
  """
32
  Loads the prediction model and clustering model.
33
 
34
  Args:
35
  prediction_model_path (str): The file path to the prediction model.
 
36
  clustering_model_path (str): The file path to the clustering model.
37
  """
38
  self.model = load_model(prediction_model_path)
39
- self.kmeans_model = joblib.load(clustering_model_path)
 
40
 
41
  def initialize_lists(self, size=30):
42
  """
@@ -48,8 +57,14 @@ class VAVAnomalizer:
48
  Returns:
49
  tuple: A tuple containing three lists initialized with zeros.
50
  """
51
- initial_values = [0] * size
52
- return initial_values.copy(), initial_values.copy(), initial_values.copy()
 
 
 
 
 
 
53
 
54
  def predict(self, df_new):
55
  """
@@ -76,7 +91,7 @@ class VAVAnomalizer:
76
  numpy.ndarray: The residuals.
77
  """
78
  actual = df_trans[30, : self.num_outputs]
79
- resid = actual - pred
80
  return actual, resid
81
 
82
  def calculate_distances(self, resid):
@@ -90,10 +105,27 @@ class VAVAnomalizer:
90
  array: Array of distances.
91
  """
92
  dist = []
93
- dist.append(np.linalg.norm(resid - self.kmeans_model.cluster_centers_[0]))
 
 
 
 
 
94
 
95
  return np.array(dist)
96
 
 
 
 
 
 
 
 
 
 
 
 
 
97
  def resize_prediction(self, pred, df_trans):
98
  """
99
  Resize the predicted values to match the shape of the transformed input data.
@@ -129,7 +161,7 @@ class VAVAnomalizer:
129
  actual = scaler.inverse_transform(np.array([df_trans[30, :]]))
130
  return actual, pred
131
 
132
- def update_lists(self, actual_list, pred_list, resid_list, actual, pred, resid):
133
  """
134
  Update the lists of actual, predicted, and residual values.
135
 
@@ -137,6 +169,7 @@ class VAVAnomalizer:
137
  actual_list (list): List of actual values.
138
  pred_list (list): List of predicted values.
139
  resid_list (list): List of residual values.
 
140
  actual (array): Actual values.
141
  pred (array): Predicted values.
142
  resid (array): Residual values.
@@ -144,13 +177,15 @@ class VAVAnomalizer:
144
  Returns:
145
  tuple: A tuple containing the updated lists of actual, predicted, and residual values.
146
  """
147
- actual_list.pop(0)
148
- pred_list.pop(0)
149
- resid_list.pop(0)
150
- actual_list.append(actual[0, 1])
151
- pred_list.append(pred[0, 1])
152
- resid_list.append(resid[0, 1])
153
- return actual_list, pred_list, resid_list
 
 
154
 
155
  def pipeline(self, df_new, df_trans, scaler):
156
  """
@@ -164,13 +199,13 @@ class VAVAnomalizer:
164
  Returns:
165
  tuple: A tuple containing the lists of actual, predicted, and residual values, and the distances.
166
  """
167
- actual_list, pred_list, resid_list = self.initialize_lists()
168
  pred = self.predict(df_new)
169
  actual, resid = self.calculate_residuals(df_trans, pred)
170
  pred = self.resize_prediction(pred, df_trans)
171
  actual, pred = self.inverse_transform(scaler, pred, df_trans)
172
- actual_list, pred_list, resid_list = self.update_lists(
173
- actual_list, pred_list, resid_list, actual, pred, resid
 
174
  )
175
  dist = self.calculate_distances(resid)
176
- return actual_list, pred_list, resid_list, dist
 
1
  import numpy as np
2
+ from sklearn.cluster import KMeans
3
+ from sklearn.decomposition import PCA
4
  from tensorflow.keras.models import load_model
5
  import joblib
6
 
 
11
  rtu_id,
12
  prediction_model_path,
13
  clustering_model_path,
14
+ pca_model_path,
15
  num_inputs,
16
  num_outputs,
17
  ):
 
21
  Args:
22
  rtu_id (int): The ID of the RTU (Roof Top Unit) associated with the VAV (Variable Air Volume) system.
23
  prediction_model_path (str): The file path to the prediction model.
24
+ pca_model_path (str): The file path to the PCA model.
25
  clustering_model_path (str): The file path to the clustering model.
26
  num_inputs (int): The number of input features for the prediction model.
27
  num_outputs (int): The number of output features for the prediction model.
 
29
  self.rtu_id = rtu_id
30
  self.num_inputs = num_inputs
31
  self.num_outputs = num_outputs
32
+ self.load_models(prediction_model_path, clustering_model_path, pca_model_path)
33
+ self.actual_list, self.pred_list, self.resid_list, self.resid_pca_list = (
34
+ self.initialize_lists()
35
+ )
36
 
37
+ def load_models(self, prediction_model_path, clustering_model_path, pca_model_path):
38
  """
39
  Loads the prediction model and clustering model.
40
 
41
  Args:
42
  prediction_model_path (str): The file path to the prediction model.
43
+ pca_model_path (str): The file path to the PCA model.
44
  clustering_model_path (str): The file path to the clustering model.
45
  """
46
  self.model = load_model(prediction_model_path)
47
+ self.pca_model: PCA = joblib.load(pca_model_path)
48
+ self.kmeans_model: KMeans = joblib.load(clustering_model_path)
49
 
50
  def initialize_lists(self, size=30):
51
  """
 
57
  Returns:
58
  tuple: A tuple containing three lists initialized with zeros.
59
  """
60
+ initial_values = [[0] * self.num_outputs] * size
61
+ initial_values1 = [[0] * 2] * size
62
+ return (
63
+ initial_values.copy(),
64
+ initial_values.copy(),
65
+ initial_values.copy(),
66
+ initial_values1.copy(),
67
+ )
68
 
69
  def predict(self, df_new):
70
  """
 
91
  numpy.ndarray: The residuals.
92
  """
93
  actual = df_trans[30, : self.num_outputs]
94
+ resid = pred - actual
95
  return actual, resid
96
 
97
  def calculate_distances(self, resid):
 
105
  array: Array of distances.
106
  """
107
  dist = []
108
+ dist.append(
109
+ np.linalg.norm(
110
+ self.pca_model.transform(resid.reshape(1, -1))
111
+ - self.kmeans_model.cluster_centers_[0]
112
+ )
113
+ )
114
 
115
  return np.array(dist)
116
 
117
+ def residual_pca(self, resid):
118
+ """
119
+ Perform PCA on the residuals.
120
+
121
+ Args:
122
+ resid (array): Residual values.
123
+
124
+ Returns:
125
+ array: Transformed residuals.
126
+ """
127
+ return self.pca_model.transform(resid.reshape(1, -1))
128
+
129
  def resize_prediction(self, pred, df_trans):
130
  """
131
  Resize the predicted values to match the shape of the transformed input data.
 
161
  actual = scaler.inverse_transform(np.array([df_trans[30, :]]))
162
  return actual, pred
163
 
164
+ def update_lists(self, actual, pred, resid, resid_pca):
165
  """
166
  Update the lists of actual, predicted, and residual values.
167
 
 
169
  actual_list (list): List of actual values.
170
  pred_list (list): List of predicted values.
171
  resid_list (list): List of residual values.
172
+ resid_pca_list (list): List of PCA-transformed residual values.
173
  actual (array): Actual values.
174
  pred (array): Predicted values.
175
  resid (array): Residual values.
 
177
  Returns:
178
  tuple: A tuple containing the updated lists of actual, predicted, and residual values.
179
  """
180
+ self.actual_list.pop(0)
181
+ self.pred_list.pop(0)
182
+ self.resid_list.pop(0)
183
+ self.resid_pca_list.pop(0)
184
+ self.actual_list.append(actual.flatten().tolist())
185
+ self.pred_list.append(pred.flatten().tolist())
186
+ self.resid_list.append(resid.flatten().tolist())
187
+ self.resid_pca_list.append(resid_pca.flatten().tolist())
188
+ return self.actual_list, self.pred_list, self.resid_list, self.resid_pca_list
189
 
190
  def pipeline(self, df_new, df_trans, scaler):
191
  """
 
199
  Returns:
200
  tuple: A tuple containing the lists of actual, predicted, and residual values, and the distances.
201
  """
 
202
  pred = self.predict(df_new)
203
  actual, resid = self.calculate_residuals(df_trans, pred)
204
  pred = self.resize_prediction(pred, df_trans)
205
  actual, pred = self.inverse_transform(scaler, pred, df_trans)
206
+ resid_pca = self.residual_pca(resid)
207
+ actual_list, pred_list, resid_list, resid_pca_list = self.update_lists(
208
+ actual, pred, resid, resid_pca
209
  )
210
  dist = self.calculate_distances(resid)
211
+ return actual_list, pred_list, resid_list, resid_pca_list, dist
src/vav/VAVPipeline.py CHANGED
@@ -39,28 +39,7 @@ class VAVPipeline:
39
  if rtu_id == 1:
40
  self.zones = [69, 68, 67, 66, 65, 64, 42, 41, 40, 39, 38, 37, 36]
41
  if rtu_id == 2:
42
- self.zones = [
43
- 72,
44
- 71,
45
- 63,
46
- 62,
47
- 60,
48
- 59,
49
- 58,
50
- 57,
51
- 50,
52
- 49,
53
- 44,
54
- 43,
55
- 35,
56
- 34,
57
- 33,
58
- 32,
59
- 31,
60
- 30,
61
- 29,
62
- 28,
63
- ]
64
 
65
  self.output_col_names = []
66
  self.input_col_names = [
@@ -171,7 +150,7 @@ class VAVPipeline:
171
  self.num_outputs = len(self.output_col_names)
172
  self.df = pd.DataFrame(columns=self.column_names)
173
 
174
- def extract_data_from_message(self, message):
175
  """
176
  Extracts data from the message payload and returns a dataframe.
177
 
@@ -181,17 +160,27 @@ class VAVPipeline:
181
  Returns:
182
  pd.DataFrame: The extracted data as a dataframe.
183
  """
184
- payload = json.loads(message.payload.decode())
185
- df = pd.DataFrame.from_dict(payload, orient="index").T
186
  if self.get_cols == True:
187
  self.get_input_output(df)
188
  self.get_cols = False
 
189
  df = df[self.column_names]
190
- self.df.loc[len(self.df)] = df.values[0]
191
 
192
- return self.df
 
 
 
 
 
193
 
194
- def fit(self, message):
 
 
 
 
 
 
 
195
  """
196
  Fits the model with the extracted data and returns the prepared input and transformed data.
197
 
@@ -201,12 +190,12 @@ class VAVPipeline:
201
  Returns:
202
  tuple: A tuple containing the prepared input and transformed data.
203
  """
204
- df = self.extract_data_from_message(message)
205
 
206
- df_window = self.get_window(df)
207
  if df_window is not None:
208
  df_trans = self.transform_window(df_window)
209
  df_new = self.prepare_input(df_trans)
 
210
  else:
211
  df_new = None
212
  df_trans = None
 
39
  if rtu_id == 1:
40
  self.zones = [69, 68, 67, 66, 65, 64, 42, 41, 40, 39, 38, 37, 36]
41
  if rtu_id == 2:
42
+ self.zones = [72, 71, 63, 62, 60, 59, 58,57, 50, 49, 44, 43, 35, 34, 33, 32, 31, 30, 29, 28]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
43
 
44
  self.output_col_names = []
45
  self.input_col_names = [
 
150
  self.num_outputs = len(self.output_col_names)
151
  self.df = pd.DataFrame(columns=self.column_names)
152
 
153
+ def extract_data_from_message(self, df: pd.DataFrame):
154
  """
155
  Extracts data from the message payload and returns a dataframe.
156
 
 
160
  Returns:
161
  pd.DataFrame: The extracted data as a dataframe.
162
  """
 
 
163
  if self.get_cols == True:
164
  self.get_input_output(df)
165
  self.get_cols = False
166
+
167
  df = df[self.column_names]
 
168
 
169
+ len_df = len(self.df)
170
+
171
+ if len_df != 0:
172
+ self.df = pd.concat([self.df, df], axis=0)
173
+ else:
174
+ self.df = df
175
 
176
+ if len_df > 31:
177
+ self.df = self.df.iloc[len_df - 31 : len_df]
178
+ self.df.loc[len_df] = self.df.mean()
179
+ return self.df
180
+ else:
181
+ return None
182
+
183
+ def fit(self, df: pd.DataFrame):
184
  """
185
  Fits the model with the extracted data and returns the prepared input and transformed data.
186
 
 
190
  Returns:
191
  tuple: A tuple containing the prepared input and transformed data.
192
  """
193
+ df_window = self.extract_data_from_message(df)
194
 
 
195
  if df_window is not None:
196
  df_trans = self.transform_window(df_window)
197
  df_new = self.prepare_input(df_trans)
198
+
199
  else:
200
  df_new = None
201
  df_trans = None
src/vav/models/kmeans_vav_1.pkl CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:086d45b9d2c98baaea5b0588cd6d228d84eb141b707fe845b11316b3ddc58774
3
- size 1568153
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:eac01ceecdae11713ee21462a8bd3dc7ea32e740c3daa42795b266a05e7c424a
3
+ size 1567961
src/vav/models/kmeans_vav_2.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:874aa63843989880be0b133e3de125c60ec4290146e152685a0ba09faf101f71
3
+ size 1567961
src/vav/models/kmeans_vav_3.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:086d45b9d2c98baaea5b0588cd6d228d84eb141b707fe845b11316b3ddc58774
3
+ size 1568153
src/vav/models/kmeans_vav_4.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:086d45b9d2c98baaea5b0588cd6d228d84eb141b707fe845b11316b3ddc58774
3
+ size 1568153
src/vav/models/lstm_vav_02.keras ADDED
Binary file (658 kB). View file
 
src/vav/models/lstm_vav_03.keras ADDED
Binary file (658 kB). View file
 
src/vav/models/lstm_vav_04.keras ADDED
Binary file (658 kB). View file
 
src/vav/models/pca_vav_1.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:00484ce0c76fc9df1f8f119325a12ec7be5baf8879d4ac192448b2d7ba397c7e
3
+ size 1323
src/vav/models/pca_vav_2.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:bf25a096656f207f218cc87347f126c2cae81a0bbe45fea6a8c144922dc6eeab
3
+ size 1371
{physLSTM → src/vav/models}/scaler_vav_2.pkl RENAMED
File without changes
src/vav/models/scaler_vav_3.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:293ee3c9082e7104dfc96425cecad2a44e5914bbd1f43c25a0fd8c36507b103a
3
+ size 1925
src/vav/models/scaler_vav_4.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:293ee3c9082e7104dfc96425cecad2a44e5914bbd1f43c25a0fd8c36507b103a
3
+ size 1925