Spaces:
Sleeping
Sleeping
File size: 2,566 Bytes
9627b36 6a62ce9 9627b36 d0f2767 9627b36 d0f2767 6a62ce9 d0f2767 6a62ce9 d0f2767 9627b36 d0f2767 9627b36 d0f2767 6a62ce9 d0f2767 6a62ce9 d0f2767 6a62ce9 d0f2767 6a62ce9 d0f2767 6a62ce9 d0f2767 6a62ce9 d0f2767 6a62ce9 d0f2767 6a62ce9 d0f2767 6a62ce9 d0f2767 6a62ce9 d0f2767 6a62ce9 d0f2767 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 |
import pandas as pd
from pickle import load
from datetime import datetime, date
from sklearn.preprocessing import StandardScaler
import joblib
import json
import numpy as np
class EnergyPredictionPipeline:
scaler = None
def __init__(
self, scaler_path=None, wing="north", bootstrap_data: pd.DataFrame = None
):
if scaler_path:
self.scaler = self.get_scaler(scaler_path)
if wing == "north":
self.input_col_names = ["date", "hvac_N"]
elif wing == "south":
self.input_col_names = ["date", "hvac_S"]
self.df = bootstrap_data[self.input_col_names]
def get_scaler(self, scaler_path):
return joblib.load(scaler_path)
def transform_windows(self, df):
return self.scaler.transform(df)
def add_dimension(self, df):
return df.reshape((1, df.shape[0], df.shape[1]))
def convert_nan(self, df):
return np.nan_to_num(df)
def date_encoder(self, df):
df["day_of_week"] = df.index.dayofweek
df["hour_of_day"] = df.index.hour
df["month"] = df.index.month
df["day_encoding"] = np.sin(2 * np.pi * df["day_of_week"] / 7)
df["hour_encoding"] = np.sin(2 * np.pi * df["hour_of_day"] / 24)
df["month_encoding"] = np.sin(2 * np.pi * df["month"] / 12)
df.drop(columns=["day_of_week", "hour_of_day", "month"], inplace=True)
return df
def prepare_input(self, df1):
df = df1.copy()
df["date"] = pd.to_datetime(df["date"])
df.set_index("date", inplace=True)
df = df.resample("60T").mean()
df = self.date_encoder(df)
df.reset_index(inplace=True, drop=True)
df = df.astype("float32")
df = df.iloc[-24 * 7 :]
return df
def extract_data_from_message(self, df):
df = df[self.input_col_names]
self.df = pd.concat([self.df, df], axis=0)
return self.df
def get_window(self, df):
time = df["date"].iloc[-1]
time = datetime.strptime(time, "%Y-%m-%d %H:%M:%S")
if time.minute == 0 & time.second == 0:
return df
else:
return None
def fit(self, message):
df_new = self.extract_data_from_message(message)
df_window = self.get_window(df_new)
if df_window is not None:
df = self.prepare_input(df_window)
df = self.transform_windows(df)
df = self.convert_nan(df)
df = self.add_dimension(df)
else:
df = None
return df
|