Spaces:
Sleeping
Sleeping
File size: 13,636 Bytes
c27effd 3beb62e c27effd 3beb62e c27effd 3beb62e c27effd 3beb62e c27effd c38f36d 3beb62e c38f36d c27effd d40a125 c27effd d40a125 6a833f6 d40a125 6a833f6 c27effd 3beb62e c27effd 3beb62e 6a833f6 c27effd 3beb62e c27effd c38f36d 3beb62e c38f36d c27effd 3beb62e c27effd d40a125 c27effd 3beb62e c27effd c38f36d 3beb62e c38f36d 3beb62e c38f36d 3beb62e c38f36d 3beb62e c38f36d 3beb62e c38f36d 3beb62e c38f36d 3beb62e c38f36d c27effd c38f36d 3beb62e c38f36d c27effd d40a125 3beb62e c27effd 3beb62e c27effd 3beb62e d40a125 c27effd 3beb62e d40a125 c27effd 3beb62e d40a125 c38f36d 3beb62e c38f36d c27effd 3beb62e c27effd 3beb62e c27effd 3beb62e c27effd 3beb62e c27effd d40a125 3beb62e d40a125 c27effd |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 |
{
"cells": [
{
"cell_type": "code",
"execution_count": 22,
"metadata": {},
"outputs": [],
"source": [
"import pandas as pd \n",
"from datetime import datetime \n",
"from datetime import date\n",
"import matplotlib.pyplot as plt\n",
"# import seaborn as sns\n",
"import numpy as np\n",
"import pandas as pd\n",
"from keras.models import Sequential\n",
"from keras.layers import LSTM, Dense\n",
"from sklearn.model_selection import train_test_split\n",
"from sklearn.preprocessing import MinMaxScaler,StandardScaler\n",
"from keras.callbacks import ModelCheckpoint\n",
"\n",
"dataPATH = r\"C:\\Users\\levim\\OneDrive\\Documents\\MastersAI_ES\\TeamProject-5ARIP10\\smart-buildings\\Data\"\n",
"# all_data = pd.read_csv(dataPATH + r\"\\long_merge.csv\")\n",
"all_data = pd.read_csv(dataPATH + r\"\\extended_energy_data.csv\")"
]
},
{
"cell_type": "code",
"execution_count": 23,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"<div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>date</th>\n",
" <th>hvac_N</th>\n",
" <th>hvac_S</th>\n",
" <th>air_temp_set_1</th>\n",
" <th>solar_radiation_set_1</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>0</th>\n",
" <td>2018-01-01 00:00:00</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>11.64</td>\n",
" <td>86.70</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1</th>\n",
" <td>2018-01-01 00:15:00</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>11.49</td>\n",
" <td>45.88</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2</th>\n",
" <td>2018-01-01 00:30:00</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>11.59</td>\n",
" <td>51.62</td>\n",
" </tr>\n",
" <tr>\n",
" <th>3</th>\n",
" <td>2018-01-01 00:45:00</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>11.44</td>\n",
" <td>21.43</td>\n",
" </tr>\n",
" <tr>\n",
" <th>4</th>\n",
" <td>2018-01-01 01:00:00</td>\n",
" <td>37.400002</td>\n",
" <td>19.5</td>\n",
" <td>11.12</td>\n",
" <td>6.45</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"</div>"
],
"text/plain": [
" date hvac_N hvac_S air_temp_set_1 \\\n",
"0 2018-01-01 00:00:00 NaN NaN 11.64 \n",
"1 2018-01-01 00:15:00 NaN NaN 11.49 \n",
"2 2018-01-01 00:30:00 NaN NaN 11.59 \n",
"3 2018-01-01 00:45:00 NaN NaN 11.44 \n",
"4 2018-01-01 01:00:00 37.400002 19.5 11.12 \n",
"\n",
" solar_radiation_set_1 \n",
"0 86.70 \n",
"1 45.88 \n",
"2 51.62 \n",
"3 21.43 \n",
"4 6.45 "
]
},
"execution_count": 23,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# Prepar energy data set with extended features\n",
"feature_list = ['date', 'hvac_N', 'hvac_S', 'air_temp_set_1', 'solar_radiation_set_1']\n",
"extended_energy_data = all_data[feature_list]\n",
"\n",
"extended_energy_data['date'] = pd.to_datetime(extended_energy_data['date'])\n",
"extended_energy_data.set_index('date', inplace=True)\n",
"\n",
"eed_15m = extended_energy_data.resample('15T').mean()\n",
"eed_15m = eed_15m.reset_index(drop=False)\n",
"\n",
"window_size = 12*4 # Half a day\n",
"eed_15m_avg = eed_15m.copy()\n",
"eed_15m_avg['hvac_N'] = eed_15m['hvac_N'].rolling(window=window_size).mean()\n",
"eed_15m_avg['hvac_S'] = eed_15m['hvac_S'].rolling(window=window_size).mean()\n",
"\n",
"eed_15m.head()"
]
},
{
"cell_type": "code",
"execution_count": 24,
"metadata": {},
"outputs": [],
"source": [
"# energy_data = pd.read_csv(dataPATH + r\"\\extended_energy_data.csv\")\n",
"# energy_data = eed_15m\n",
"energy_data = eed_15m_avg\n",
"\n",
"# Convert the date column to datetime\n",
"energy_data['date'] = pd.to_datetime(energy_data['date'], format = \"%Y-%m-%d %H:%M:%S\")\n",
"\n",
"energy_data['day_of_week'] = energy_data['date'].dt.weekday\n",
"# Filter the data for the year 2019\n",
"df_filtered = energy_data[ (energy_data.date.dt.date >date(2019, 1, 20)) & (energy_data.date.dt.date< date(2019, 7, 26))]\n",
"\n",
"# Check for NA values in the DataFrame\n",
"if df_filtered.isna().any().any():\n",
" print(\"There are NA values in the DataFrame columns.\")"
]
},
{
"cell_type": "code",
"execution_count": 25,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"[]"
]
},
"execution_count": 25,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"testdataset_df = df_filtered[(df_filtered.date.dt.date <date(2019, 2, 20))]\n",
"\n",
"traindataset_df = df_filtered[ (df_filtered.date.dt.date >date(2019, 2, 21))]\n",
"\n",
"testdataset = testdataset_df.drop(columns=[\"date\"]).values\n",
"\n",
"traindataset = traindataset_df.drop(columns=[\"date\"]).values\n",
"\n",
"columns_with_na = traindataset_df.columns[traindataset_df.isna().any()].tolist()\n",
"columns_with_na"
]
},
{
"cell_type": "code",
"execution_count": 26,
"metadata": {},
"outputs": [],
"source": [
"traindataset = traindataset.astype('float32')\n",
"testdataset = testdataset.astype('float32')\n",
"\n",
"mintest = np.min(testdataset[:,0:2])\n",
"maxtest = np.max(testdataset[:,0:2])\n",
"\n",
"scaler = MinMaxScaler(feature_range=(0, 1))\n",
"traindataset = scaler.fit_transform(traindataset)\n",
"testdataset = scaler.transform(testdataset)"
]
},
{
"cell_type": "code",
"execution_count": 35,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Epoch 1/5\n",
"225/229 [============================>.] - ETA: 0s - loss: 0.0130\n",
"Epoch 1: val_loss improved from inf to 0.01885, saving model to lstm_energy_01.keras\n",
"229/229 [==============================] - 8s 16ms/step - loss: 0.0129 - val_loss: 0.0189\n",
"Epoch 2/5\n",
"229/229 [==============================] - ETA: 0s - loss: 0.0058\n",
"Epoch 2: val_loss did not improve from 0.01885\n",
"229/229 [==============================] - 3s 11ms/step - loss: 0.0058 - val_loss: 0.0192\n",
"Epoch 3/5\n",
"225/229 [============================>.] - ETA: 0s - loss: 0.0052\n",
"Epoch 3: val_loss improved from 0.01885 to 0.01818, saving model to lstm_energy_01.keras\n",
"229/229 [==============================] - 3s 11ms/step - loss: 0.0052 - val_loss: 0.0182\n",
"Epoch 4/5\n",
"225/229 [============================>.] - ETA: 0s - loss: 0.0045\n",
"Epoch 4: val_loss did not improve from 0.01818\n",
"229/229 [==============================] - 3s 11ms/step - loss: 0.0045 - val_loss: 0.0190\n",
"Epoch 5/5\n",
"226/229 [============================>.] - ETA: 0s - loss: 0.0041\n",
"Epoch 5: val_loss did not improve from 0.01818\n",
"229/229 [==============================] - 3s 11ms/step - loss: 0.0041 - val_loss: 0.0186\n"
]
},
{
"data": {
"text/plain": [
"<keras.callbacks.History at 0x25e69ac0370>"
]
},
"execution_count": 35,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"train,test = traindataset,testdataset\n",
"steps_in_past = 3 \n",
"time_step = 4*6\n",
"no_inputs = 5\n",
"no_outputs = 2\n",
"def create_dataset(dataset,time_step):\n",
" x = [[] for _ in range(no_inputs)] \n",
" Y = [[] for _ in range(no_outputs)]\n",
" for i in range(time_step * steps_in_past, len(dataset) - time_step * steps_in_past): # -time_step is to ensure that the Y value has enough values\n",
" for j in range(no_inputs):\n",
" x[j].append(dataset[(i-time_step*steps_in_past):i, j])\n",
" for j in range(no_outputs):\n",
" Y[j].append(dataset[i:i+time_step, j]) \n",
" x = [np.array(feature_list) for feature_list in x]\n",
" x = np.stack(x,axis=1)\n",
" Y = [np.array(feature_list) for feature_list in Y] \n",
" Y = np.stack(Y,axis=1)\n",
" Y = np.reshape(Y, (Y.shape[0], time_step*no_outputs))\n",
" return x, Y\n",
"\n",
"\n",
"X_train, y_train = create_dataset(train, time_step)\n",
"X_test, y_test = create_dataset(test, time_step)\n",
"\n",
"\n",
"model = Sequential()\n",
"model.add(LSTM(units=50, return_sequences=True, dropout= 0.2, input_shape=(X_train.shape[1], X_train.shape[2])))\n",
"model.add(LSTM(units=50, dropout= 0.2, return_sequences=True))\n",
"model.add(LSTM(units=time_step*no_outputs))\n",
"model.add(Dense(units=time_step*no_outputs))\n",
"\n",
"model.compile(optimizer='adam', loss='mean_squared_error')\n",
"\n",
"checkpoint_path = \"lstm_energy_01.keras\"\n",
"checkpoint_callback = ModelCheckpoint(filepath=checkpoint_path, monitor='val_loss', verbose=1, save_best_only=True, mode='min')\n",
"model.fit(X_train, y_train, validation_data=(X_test, y_test), epochs=5, batch_size=64, verbose=1, callbacks=[checkpoint_callback])"
]
},
{
"cell_type": "code",
"execution_count": 36,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"86/86 [==============================] - 0s 3ms/step - loss: 0.0186\n",
"86/86 [==============================] - 1s 3ms/step\n",
"Loss: 0.01863059028983116\n"
]
}
],
"source": [
"loss = model.evaluate(X_test, y_test)\n",
"test_predict1 = model.predict(X_test)\n",
"print(\"Loss: \", loss)\n",
"# Converting values back to the original scale\n",
"scalerBack = MinMaxScaler(feature_range=(mintest, maxtest))\n",
"test_predict2 = scalerBack.fit_transform(test_predict1)\n",
"y_test1 = scalerBack.fit_transform(y_test)\n"
]
},
{
"cell_type": "code",
"execution_count": 37,
"metadata": {},
"outputs": [],
"source": [
"%matplotlib qt\n",
"\n",
"# Create a 3x3 grid of subplots\n",
"fig, axes = plt.subplots(3, 3, figsize=(10, 10))\n",
"\n",
"var = 100\n",
"# Loop over the value index\n",
"for i, ax in enumerate(axes.flat):\n",
" # Plot your data or perform any other operations\n",
" ax.plot(y_test[var+i,0:time_step], label='Original Testing Data', color='blue')\n",
" ax.plot(test_predict1[var+i,0:time_step], label='Predicted Testing Data', color='red',alpha=0.8)\n",
" # ax.set_title(f'Plot {i+1}')\n",
" ax.set_title('Testing Data - Predicted vs Actual')\n",
" ax.set_xlabel('Time [hours]')\n",
" ax.set_ylabel('Energy Consumption [kW]') \n",
" ax.legend()\n",
"\n",
"# Adjust the spacing between subplots\n",
"plt.tight_layout()\n",
"\n",
"# Show the plot\n",
"plt.show()"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# Autoregressive prediction\n",
"X_pred = testdataset.copy()\n",
"for i in range(steps_in_past,steps_in_past*2):\n",
" xin = X_pred[i-steps_in_past:i].reshape((1, steps_in_past, no_outputs)) \n",
" X_pred[i] = model.predict(xin, verbose = 0)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# Plot prediction vs actual for test data\n",
"plt.figure()\n",
"plt.plot(X_pred[steps_in_past:steps_in_past*2,0],':',label='LSTM')\n",
"plt.plot(testdataset[steps_in_past:steps_in_past*2,0],'--',label='Actual')\n",
"plt.legend()"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "experiments",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.8.15"
}
},
"nbformat": 4,
"nbformat_minor": 2
}
|